Institute for Systems Research Technical Reports

Permanent URI for this collectionhttp://hdl.handle.net/1903/4376

This archive contains a collection of reports generated by the faculty and students of the Institute for Systems Research (ISR), a permanent, interdisciplinary research unit in the A. James Clark School of Engineering at the University of Maryland. ISR-based projects are conducted through partnerships with industry and government, bringing together faculty and students from multiple academic departments and colleges across the university.

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    Collaborative Decision Making in Air Traffic Management: Current and Future Research Directions
    (2000) Ball, Michael O.; Hoffman, Robert L.; Chen, Chien-Yu; Vossen, Thomas; ISR; NEXTOR
    Collaborative Decision Making (CDM) embodies a new philosophy for managing air traffic. The initial implementation of CDM in the US has been aimed at Ground Delay Program Enhancements (GDP-E). However, the underlying concepts of CDM have the potential for much broader applicability.

    This paper reviews on-going and proposed CDM research streams. The topic areas discussed include: ground delay program enhancements; collaborative routing; performance monitoring and analysis; collaborative resource allocation mechanisms; game theory models for analyzing CDM procedures and information exchange; collaborative information collection and distribution.

  • Thumbnail Image
    Item
    The Rate Control Index for Traffic Flow
    (2000) Ball, Michael O.; Hoffman, Robert L.; Ball, Michael O.; ISR; NEXTOR
    The objective of Air Traffic Flow Management is to maintain safe and efficient use of airspace and airports by regulating theflow of traffic. In this paper, we introduce a single-valued metric for post-operatively rating the performance ofachieved traffic flow against targeted traffic flow. We provide variations on the metric, one of which factors out stochastic conditions upon which a plan is formulated, and show how those improve on current traffic control analysis techniques.

    The core of the metric is intuitive and simple, yet leads to an interesting optimization problem that can be efficiently solved via dynamic programming. Numerical results of the metric are given as well as a sample of the type of analysis that should follow a low rating by the metric.

    Although this metric was originally developed to rate the performance of GroundDelay Programs, it is equally applicable to any setting in which the flow of discrete objects such as vehicles is controlled and later evaluated.

  • Thumbnail Image
    Item
    The Static Stochastic Ground Holding Problem with Aggregate Demands
    (1999) Ball, Michael O.; Hoffman, Robert L.; Odoni, A.; Rifkin, R.; Ball, Michael O.; ISR; NEXTOR
    The ground delay program is a mechanism used to decrease the rate of incoming flights into an airport when it is projected that arrival demand into the airport will exceed capacity. In this paper, we present an integer programming model for plannning ground delay programs. The model considers a stochastic capacity profile which is represented by a set of airport capacity scenarios and their probabilities. Both the demand on the airport and the output of the model are represented at an aggregate level in terms of number of flights per unit time. This allows the model to be used in conjunction with arbitrarily complex preprocesses for allocating individual flights to slots. It was specifically designed to be used in the Collaborative Decision Making setting where individual flight assignments result from an iterative process involving both the airlines and traffic flow managers. We show that the linear programming dual of the model can be transformed into a network flow problem. This implies that the integer program can be solved efficiently using linear programming or network flow models.