Institute for Systems Research Technical Reports

Permanent URI for this collectionhttp://hdl.handle.net/1903/4376

This archive contains a collection of reports generated by the faculty and students of the Institute for Systems Research (ISR), a permanent, interdisciplinary research unit in the A. James Clark School of Engineering at the University of Maryland. ISR-based projects are conducted through partnerships with industry and government, bringing together faculty and students from multiple academic departments and colleges across the university.

Browse

Search Results

Now showing 1 - 5 of 5
  • Thumbnail Image
    Item
    An Internet-Based Work Instructions System
    (1998) Herrmann, Jeffrey W.; Lin, Edward; Minis, Ioannis; ISR
    The Black & Decker factory in Easton, Maryland, uses parallel, off-line assembly lines to produce multiple models in small, infrequent production runs. The University of Maryland and Black & Decker have implemented an Internet-based work instructions system that supports parallel, off-line assembly. Black & Decker personnel create and update easy-to-read paperless work instructions, and each assembly station automatically retrieves the correct paperless work instructions and displays them.
  • Thumbnail Image
    Item
    A Generative Approach for Design Evaluation and Partner Selection for Agile Manufacturing
    (1996) Minis, Ioannis; Herrmann, Jeffrey W.; Lam, Giang; ISR
    An agile manufacturing firm forms partnerships with other manufacturers as necessary to design and manufacture a product quickly in response to a market opportunity. In order to form a successful partnership, the firm needs to create a superior design and select the partners that best fit the partnership's scope. In this paper we consider the intrinsic relationship between design evaluation and partner selection. The paper presents a generative approach that a design team can use to obtain feedback about a new product embodiment based on high- level process plans and on the manufacturing capabilities and performance of potential partners. Using this information, the design team can improve their design and identify the potential partners that best fit its manufacturing requirements. The primary application of this work is to certain types of mechanical and electronic products.
  • Thumbnail Image
    Item
    An Integrated Model for Manufacturing Shop Design
    (1995) Ioannou, George; Minis, Ioannis; ISR
    This paper presents an integer programming formulation for the manufacturing shop design problem, which integrates decisions concerning the layout of the resource groups on the shop floor with the design of the material handling system. The model reflects critical practical design concerns including the capacity of the flow network and of the transporters, and the tradeoff between fixed (construction and acquisition) and variable (operational) costs. For realistic industrial cases, the size of the problem prevents the solution through explicit or implicit enumeration schemes. The paper addresses this limitation by decomposing the global model into its natural components. The resulting submodels are shown to be standard problems of operations research. The decomposition approach provides ways to solve the integrated shop design problem in an effective manner.
  • Thumbnail Image
    Item
    Current Research on Manufacturing Shop and Material Handling System Design
    (1995) Ioannou, George; Minis, Ioannis; ISR
    The importance of the manufacturing shop design in the successful operation of a production system is well known and as a result, significant research has been devoted to this area. This paper reviews important literature in various aspects of manufacturing shop design including layout, material flow path design, and transporter fleet sizing and routing. In addition, the paper focuses on contributions to integration issues such as the design for operation of material handling systems, and the concurrent design of the shop layout and the transportation system. Research studies in these areas are critically examined, and emerging opportunities for research are identified.
  • Thumbnail Image
    Item
    Minimization of Acquisition and Operational Costs in Horizontal Material Handling System Design
    (1995) Herrmann, Jeffrey W.; Ioannou, George; Minis, Ioannis; Proth, J.M.; ISR
    This paper considers the problem of minimizing the fixed cost of acquiring material handling transporters and the operational cost of material transfer in a manufacturing system. This decision problem arises during manufacturing facility design, and is modeled using an integer programming formulation. Two efficient heuristics are developed to solve it. Computational complexity, worst-case performance analysis, and extensive computational tests are provided for both heuristics. The results indicate that the proposed methods are well suited for large-scale manufacturing applications.