Institute for Systems Research Technical Reports

Permanent URI for this collectionhttp://hdl.handle.net/1903/4376

This archive contains a collection of reports generated by the faculty and students of the Institute for Systems Research (ISR), a permanent, interdisciplinary research unit in the A. James Clark School of Engineering at the University of Maryland. ISR-based projects are conducted through partnerships with industry and government, bringing together faculty and students from multiple academic departments and colleges across the university.

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Improving the Efficiency of Limited-Memory Heuristic Search
    (1995) Ghosh, Subrata; Mahanti, Ambuj; Nau, D.S.; ISR
    This paper describes a new admissible tree search algorithm called Iterative Threshold Search (ITS). ITS can be viewed as a much-simplified version of MA*[2], and a generalized version of MREC [15]. ITS's node selection and retraction (pruning) overhead is much less expensive than MA*'s. We also present the following results: 1. Every node generated by ITS is also generated by IDA*, even if ITS is given no more memory than IDA*. In addition, there are trees on which ITS generates O(N) nodes in comparison to O(N log N) nodes generated by IDA*, where N is the number of nodes eligible for generation by A*.

    2. Experimental tests show that if the heuristic branching factor is low and the node- generation time is high (as in most practical problems), then ITS can provide significant savings in both number of node generations and running time.

    3. Our experimental results also suggest that on the Traveling Salesman Problem, both IDA* and ITS are asymptotically optimal on the average if the costs between the cities are drawn from a fixed range. However, if the range of costs grows in proportion to the problem size, then IDA* is not asymptotically optimal. ITS's asymptotic complexity in the later case depends on the amount of memory available to it.

  • Thumbnail Image
    Item
    PRA: Massively Parallel Heuristic Search
    (1991) Evett, Matthew; Hendler, James A.; Mahanti, Ambuj; Nau, D.; ISR
    In this paper we describe a variant of A* search designed to run on the massively parallel, SIMD Connection Machine. The algorithm is designed to run in a limited memory by use of a retraction technique which allows nodes with poor heuristic values to be removed from the open list, until such time as they may need reexpansion, more promising paths having failed. Our algorithm, called PRA* (for Parallel Retraction A*), is designed to maximize use of the Connection Machine's memory and processors. In addition, the algorithm is guaranteed to return an optimal path when an admissable heuristic is used. Results comparing PRA* to Korf's IDA* for the fifteen-puzzle show significantly fewer node expansions for PRA*. In addition, empirical results show significant parallel speedups, indicative of the algorithm's design for high processor utilization.