Institute for Systems Research Technical Reports

Permanent URI for this collectionhttp://hdl.handle.net/1903/4376

This archive contains a collection of reports generated by the faculty and students of the Institute for Systems Research (ISR), a permanent, interdisciplinary research unit in the A. James Clark School of Engineering at the University of Maryland. ISR-based projects are conducted through partnerships with industry and government, bringing together faculty and students from multiple academic departments and colleges across the university.

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Control Problems of Hydrodynamic Type
    (1998) Krishnaprasad, Perinkulam S.; Manikonda, Vikram; ISR; CDCSS
    It has been known for some time that the classical work of Kirchhoff, Love,and Birkhoff on rigid bodies in incompressible, irrotational flows provideseffective models for treating control problems for underwater vehicles.This has also led to a better appreciation of the dynamics of suchsystems. In this paper, we develop results based on geometric mechanics andcenter manifold theory to solve controllability and stabilization questionsfor a class of under-actuated left invariant mechanical systems on Liegroups that include approximate models of underwater vehicles and surfacevehicles. We also provide numerical evidence to capture the globalproperties of certain interesting feedback laws.

    (This work appears as an invited paper in the Proc. IFAC Sympo. on NonlinearControl Systems Design (NOLCOS'98), (1998), 1:139-144)

  • Thumbnail Image
    Item
    Controllability of Lie-Poisson Reduced Dynamics
    (1997) Manikonda, Vikram; Krishnaprasad, Perinkulam S.; ISR
    In this paper we present sufficient conditions for controllability of Lie-Poisson reduced dynamics of a class of mechanical systems with symmetry. We prove conditions (boundedness of coadjoint orbits and existence of a radially unbounded Lyapunov function) under which the drift vector field (of the reduced system) is weakly positively Poisson stable (WPPS). The WPPS nature of the drift vector field along with the Lie algebra rank condition is used to show controllability of the reduced system. We discuss the dynamics, Lie-Poisson reduction, and controllability of hovercraft, spacecraft and underwater vehicles, all treated as rigid bodies.