Institute for Systems Research Technical Reports

Permanent URI for this collectionhttp://hdl.handle.net/1903/4376

This archive contains a collection of reports generated by the faculty and students of the Institute for Systems Research (ISR), a permanent, interdisciplinary research unit in the A. James Clark School of Engineering at the University of Maryland. ISR-based projects are conducted through partnerships with industry and government, bringing together faculty and students from multiple academic departments and colleges across the university.

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    A Practical Method for Design of Hybrid-Type Production Facilities
    (1994) Harhalakis, George; Lu, Thomas C.; Minis, Ioannis; Nagi, R.; ISR
    A comprehensive methodology for the design of hybrid-type production shops that comprise both manufacturing cells and individual workcenters is presented. It targets the minimization of the material handling effort within the shop and comprises four basic steps: (1) identification of candidate manufacturing cells, (2) evaluation and selection of the cells to be implemented, (3) determination of the intra-cell layout, and (4) determination of the shop layout. For the cell formation step the ICTMM technique has been enhanced to cater for important practical issues. The layout of each significant cell is determined by a simulated annealing (SA)-based algorithm. Once the sizes and shapes of the selected cells are known, the shop layout is determined by a similar algorithm. The resulting hybrid shop consists of the selected cells and the remaining machines. The methodology has been implemented in an integrated software system and has been applied to redesign the shop of a large manufacturer of radar antennas.
  • Thumbnail Image
    Item
    Hierarchical Modeling Approach for Production Planning
    (1992) Harhalakis, George; Nagi, R.; Proth, J.M.; ISR
    Production management problems are complex owing to large dimensionality, wide variety of decisions of varying scope, focus and time-horizon, and disturbances. A hierarchical approach to these problems is a way to address this complexity, wherein the global problem is decomposed into a series of top-down sub- problems. We advocate that a single planning architecture cannot be employed for all planning problems. We propose a multi-layer hierarchical decomposition which is dependent on the complexity of the problem, and identify the factors influencing complexity. A systematic stepwise design approach for the construction of the hierarchy and inputs required are presented. The subsequent operation of the hierarchy in an unreliable environment is also explained. Aggregation schemes for model reduction have been developed and blended with a time-scale decomposition of activities to provide the theoretical foundation of the architecture. It is also hoped that this methodology can be applied to other such large-scale complex decision making problems.
  • Thumbnail Image
    Item
    Manufacturing Cell Design Using Simulated Annealing: an Industrial Application
    (1990) Harhalakis, George; Proth, J.M.; Xie, X.L.; ISR
    In this paper, we give a brief summary of simulated annealing procedures used to solve combinatorial optimization problems. We then present the manufacturing cell design problem which consists of designing cells of limited size in order to minimize inter- cell traffic. We show how to use a SA approach to obtain a good, if not optimum, solution to this problem. Finally, we apply this approach to an industrial problem and compare the results to the ones obtained using the so-called twofold heuristic algorithm.