Institute for Systems Research Technical Reports

Permanent URI for this collectionhttp://hdl.handle.net/1903/4376

This archive contains a collection of reports generated by the faculty and students of the Institute for Systems Research (ISR), a permanent, interdisciplinary research unit in the A. James Clark School of Engineering at the University of Maryland. ISR-based projects are conducted through partnerships with industry and government, bringing together faculty and students from multiple academic departments and colleges across the university.

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    Item
    Extension Based Limited Lookahead Supervision of Discrete Event Systems
    (1995) Kumar, Ratnesh; Cheung, Hok M.; Marcus, Steven I.; ISR
    Supervisory control of discrete event systems using limited lookahead has been studied by Chung-Lafortune-Lin, where control is computed by truncating the plant behavior up to the limited lookahead window. We present a different approach in which the control is computed by extending the plant behavior by arbitrary traces beyond the limited lookahead window. The proposed supervisor avoids the notion of pending traces. Consequently the need for considering either a conservative or an optimistic attitude regarding pending traces (as in the work of Chung- Lafortune-Lin) does not arise. It was shown that an optimistic attitude may result in violation of the desired specifications. We demonstrate here that a conservative attitude may result in a restrictive control policy by showing that in some cases the proposed supervisor is less restrictive than the conservative attitude-based supervisor. Moreover, the proposed approach uses the notion of relative closure to construct the supervisor so that it is non-blocking even when the desired behavior is not relative closed (Chung-Lafortune-Lin assume relative closure). Finally, the proposed supervisor possesses all the desirable properties that a conservative attitude based supervisor of Chung-Lafortune-Lin possesses. We illustrate our approach by applying it to concurrency control in database management systems.