Institute for Systems Research Technical Reports

Permanent URI for this collectionhttp://hdl.handle.net/1903/4376

This archive contains a collection of reports generated by the faculty and students of the Institute for Systems Research (ISR), a permanent, interdisciplinary research unit in the A. James Clark School of Engineering at the University of Maryland. ISR-based projects are conducted through partnerships with industry and government, bringing together faculty and students from multiple academic departments and colleges across the university.

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    Item
    The MDLe Engine -- A Software Tool for Hybrid Motion Control
    (2000) Hristu, Dimitrios; Krishnaprasad, Perinkulam S.; Andersson, Sean B.; Zhang, F.; Sodre, P.; D'Anna, L.; ISR; CDCSS
    One of the important but often overlooked practical challenges in motion control for robotics and other autonomous machines has to do with the implementation of theoretical tools into software that will allow the system to interact effectively with the physical world. More often than not motion control programs are machine-specific and not reusable, even when the underlying algorithm does not require any changes.

    The work on Motion Description Languages (MDL) has been an effort to formalize a general-purpose robot programming language that allows one to incorporate both switching logic and differential equations. Extended MDL (MDLe) is a device-independent programming language for hybrid motion control, accommodating hybrid controllers, multi-robot interactions and robot-to-robot communications.

    The purpose of this paper is to describe the "MDLe engine," a software tool that implements the MDLe language.

    We have designed a basic compiler/software foundation for writing MDLe code. We provide a brief description of the MDLe syntax, implementation architecture, and functionality. Sample programs are presented together with the results of their execution on a set of physical and simulated mobile robots.