Entomology Research Works

Permanent URI for this collectionhttp://hdl.handle.net/1903/16

Browse

Search Results

Now showing 1 - 10 of 23
  • Item
    Evidence for divergent selection between the molecular forms of Anopheles gambiae: role of predation
    (Springer Nature, 2008-01-11) Diabaté, Abdoulaye; Dabiré, Roch K; Heidenberger, Kyle; Crawford, Jacob; Lamp, William O; Culler, Lauren E; Lehmann, Tovi
    The molecular forms of Anopheles gambiae are undergoing speciation. They are characterized by a strong assortative mating and they display partial habitat segregation. The M form is mostly found in flooded/irrigated areas whereas the S form dominates in the surrounding areas, but the ecological factors that shape this habitat segregation are not known. Resource competition has been demonstrated between species undergoing divergent selection, but resource competition is not the only factor that can lead to divergence. In a field experiment using transplantation of first instar larvae, we evaluated the role of larval predators in mediating habitat segregation between the forms. We found a significant difference in the ability of the molecular forms to exploit the different larval sites conditioned on the presence of predators. In absence of predation, the molecular forms outcompeted each other in their respective natural habitats however, the developmental success of the M form was significantly higher than that of the S form in both habitats under predator pressure. Our results provide the first empirical evidence for specific adaptive differences between the molecular forms and stress the role of larval predation as one of the mechanisms contributing to their divergence.
  • Item
    Toward reconstructing the evolution of advanced moths and butterflies (Lepidoptera: Ditrysia): an initial molecular study
    (Springer Nature, 2009-12-02) Regier, Jerome C; Zwick, Andreas; Cummings, Michael P; Kawahara, Akito Y; Cho, Soowon; Weller, Susan; Roe, Amanda; Baixeras, Joaquin; Brown, John W; Parr, Cynthia; Davis, Donald R; Epstein, Marc; Hallwachs, Winifred; Hausmann, Axel; Janzen, Daniel H; Kitching, Ian J; Solis, M Alma; Yen, Shen-Horn; Bazinet, Adam L; Mitter, Charles
    In the mega-diverse insect order Lepidoptera (butterflies and moths; 165,000 described species), deeper relationships are little understood within the clade Ditrysia, to which 98% of the species belong. To begin addressing this problem, we tested the ability of five protein-coding nuclear genes (6.7 kb total), and character subsets therein, to resolve relationships among 123 species representing 27 (of 33) superfamilies and 55 (of 100) families of Ditrysia under maximum likelihood analysis. Our trees show broad concordance with previous morphological hypotheses of ditrysian phylogeny, although most relationships among superfamilies are weakly supported. There are also notable surprises, such as a consistently closer relationship of Pyraloidea than of butterflies to most Macrolepidoptera. Monophyly is significantly rejected by one or more character sets for the putative clades Macrolepidoptera as currently defined (P < 0.05) and Macrolepidoptera excluding Noctuoidea and Bombycoidea sensu lato (P ≤ 0.005), and nearly so for the superfamily Drepanoidea as currently defined (P < 0.08). Superfamilies are typically recovered or nearly so, but usually without strong support. Relationships within superfamilies and families, however, are often robustly resolved. We provide some of the first strong molecular evidence on deeper splits within Pyraloidea, Tortricoidea, Geometroidea, Noctuoidea and others. Separate analyses of mostly synonymous versus non-synonymous character sets revealed notable differences (though not strong conflict), including a marked influence of compositional heterogeneity on apparent signal in the third codon position (nt3). As available model partitioning methods cannot correct for this variation, we assessed overall phylogeny resolution through separate examination of trees from each character set. Exploration of "tree space" with GARLI, using grid computing, showed that hundreds of searches are typically needed to find the best-feasible phylogeny estimate for these data. Our results (a) corroborate the broad outlines of the current working phylogenetic hypothesis for Ditrysia, (b) demonstrate that some prominent features of that hypothesis, including the position of the butterflies, need revision, and (c) resolve the majority of family and subfamily relationships within superfamilies as thus far sampled. Much further gene and taxon sampling will be needed, however, to strongly resolve individual deeper nodes.
  • Item
    Herbivore metabolism and stoichiometry each constrain herbivory at different organizational scales across ecosystems
    (Ecology Letters, 2009) Hillebrand, Helmut; Borer, Elizabeth; Bracken, Matthew; Cardinale, Brad; Cebrian, Just; Cleland, Elsa; Elser, James; Gruner, Daniel; Harpole, Stanley; Ngai, Jackie; Sandin, Stuart; Seabloom, Eric; Shurin, Jonathan; Smith, Jennifer; Smith, Melinda
    Plant-herbivore interactions mediate the trophic structure of ecosystems. We use a comprehensive data set extracted from the literature to test the relative explanatory power of two contrasting bodies of ecological theory, the metabolic theory of ecology (MTE) and ecological stoichiometry (ES), for per-capita and population-level rates of herbivory across ecosystems. We found that ambient temperature and herbivore body size (MTE) as well as stoichiometric mismatch (ES) both constrained herbivory, but at different scales of biological organization. Herbivore body size, which varied over 11 orders of magnitude, was the primary factor explaining variation in per-capita rates of herbivory. Stoichiometric mismatch explained more variation in population-level herbivory rates and also in per-capita rates when we examined data from within functionally similar trophic groups (e.g. zooplankton). Thus, predictions from metabolic and stoichiometric theories offer complementary explanations for patterns of herbivory that operate at different scales of biological organization.
  • Item
    Host resistance reverses the outcome of competition between microparasites
    (Ecological Society of America, 2009) Gruner, Daniel; Kolekar, Arunima; McLaughlin, John; Strong, Donald
    Predators and parasites can control the abundance or biomass of herbivores with indirect effects on producer communities and ecosystems, but the interplay of multiple natural enemies may yield unexpected dynamics. We experimentally examined interactions between two microparasites (entomopathogenic nematodes) isolated from sandy grassland soils of coastal California: Heterorhabditis marelatus (Heterorhabditidae) and Steinernema feltiae (Steinernematidae). Heterorhabditis marelatus drives trophic cascades by attacking root- and stem-boring ghost moth caterpillars (Hepialus californicus, Hepialidae), thereby indirectly protecting bush lupine shrubs (Lupinus arboreus, Fabaceae). Extensive field surveys demonstrated sympatric overlap in microhabitat use under lupine canopies and similar mean prevalence of the two nematode species. Using a response-surface design in the laboratory, we varied relative and absolute microparasite densities to test for competitive outcomes within an evolutionary naı¨ve host, larvae of the greater wax moth Galleria mellonella (Pyralidae), and within the native host Hepialus californicus. Independent of conspecific or interspecific density, S. feltiae dominated as expected over H. marelatus within the naı¨ve Galleria, but S. feltiae infected hosts at low frequency and showed lower reproductive fitness than H. marelatus within native Hepialus hosts. Contrary to studies that demonstrate the pairwise dominance of steinernematid over heterorhabditid species in laboratory hosts, host resistance to S. feltiae may provide a mechanism for coexistence of multiple microparasite species. We hypothesize that the ubiquitous field prevalence and rapid life history of S. feltiae imply its use of widespread, abundant but small-bodied hosts and indicate the lack of direct competition with H. marelatus in the Hepialus–Lupinus trophic cascade.
  • Item
    Metapopulation dynamics override local limits on long-term parasite persistence
    (2008-12) Ram, Karthik; Preisser, Evan; Gruner, Daniel; Strong, Donald
    A simple null model, particularly germane to small and vulnerable organisms such as parasites, is that local conditions set a stage upon which larger-scale dynamics play out. Soil moisture strongly influences survival of entomopathogenic nematodes (EPN), which in turn drive trophic cascades by protecting vegetation from root-feeding herbivores. In this study, we examine the mechanisms responsible for patchy occurrence of an entomopathogenic nematode, Heterorhabditis marelatus, in a California coastal prairie. One hypothesis proposes that biotic factors such as competition and natural enemies could regulate occurrence of EPN populations. We found that fungi and other enemies of EPN, although locally potent, did not explain the patterns of incidence across sites. Abiotic factors also have strong effects on EPN persistence, especially for vulnerable free-living stages. Thus, we tested the hypothesis that patchy occurrence of EPN on a large landscape was driven by differences in soil moisture. Our research uses long-term data on nematode incidence in combination with a landscapelevel experiment to demonstrate the lack of a correlation between soil moisture and long-term persistence. A year-long experiment showed EPN mortality was weakly correlated with soil moisture among our study sites. Thirteen years of data, however, showed that colonization rates were highly correlated with long-term persistence. Sites with highest long-term persistence experienced the highest rates of rhizosphere colonization, extinction, and turnover. As a result, we concluded that metapopulation dynamics override limitations set by local and short-term abiotic conditions to determine long-term persistence in this parasite-driven trophic cascade.
  • Item
    Potential for entomopathogenic nematodes in biological control: a meta-analytical synthesis and insights from trophic cascade theory
    (2008) Denno, Robert; Gruner, Daniel; Kaplan, Ian
    Entomopathogenic nematodes (EPN) are ubiquitous and generalized consumers of insects in soil food webs, occurring widely in and agricultural ecosystems on all continents. Augmentative releases of EPN have been used to enhance biological control of pests in agroecosystems. Pest managers strive to achieve a trophic cascade whereby natural-enemy effects permeate down through the food web to suppress host herbivores and increase crop production. Although trophic cascades have been studied in diverse aboveground arthropod-based systems, they are infrequently investigated in soil systems. Moreover, no overall quantitative assessment of the effectiveness of EPN in suppressing hosts with cascading benefits to plants has been made. Toward synthesizing the available but limited information on EPN and their ability to suppress prey and affect plant yield, we surveyed the literature and performed a meta-analysis of 35 published studies. Our analysis found that effect sizes for arthropod hosts as a result of EPN addition were consistently negative and indirect effects on plants were consistently positive. Results held across several different host metrics (abundance, fecundity and survival) and across several measures of plant performance (biomass, growth, yield and survival). Moreover, the relationship between plant and host effect size was strikingly and significantly negative. That is, the positive impact on plant responses generally increased as the negative effect of EPN on hosts intensified, providing strong support for the mechanism of trophic cascades. We also review the ways in which EPN might interact antagonistically with each other and other predators and pathogens to adversely affect host suppression and dampen trophic cascades. We conclude that the food web implications of multiple-enemy interactions involving EPN are poorly studied, but, as management techniques that promote the long-term persistence of EPN are improved, antagonistic interactions are more likely to arise. We hope that the likely occurrence of antagonistic interactions in soil food webs should stimulate researchers to conduct field experiments explicitly designed to examine multiple-enemy interactions involving EPN and their cascading effects to hosts and plants.
  • Item
    Dynamics of a subterranean trophic cascade in space and time
    (2008) Ram, Karthik; Gruner, Daniel; McLaughlin, John; Preisser, Evan; Strong, Donald
    Trophic cascades, whereby predators indirectly benefit plant biomass by reducing herbivore pressure, form the mechanistic basis for classical biological control of pest insects. Entomopathogenic nematodes (EPN) are lethal to a variety of insect hosts with soil-dwelling stages, making them promising biocontrol agents. EPN biological control programs, however, typically fail because nematodes do not establish, persist and/or recycle over multiple host generations in the field. A variety of factors such as local abiotic conditions, host quantity and quality, and rates of movement affect the probability of persistence. Here, we review results from 13 years of study on the biology and ecology of an endemic population of Heterorhabditis marelatus (Rhabditida: Heterorhabditidae) in a California coastal prairie. In a highly seasonal abiotic environment with intrinsic variation in soils, vegetation structure, and host availability, natural populations of H. marelatus persisted at high incidence at some but not all sites within our study area. Through a set of field and lab experiments, we describe mechanisms and hypotheses to understand the persistence of H. marelatus. We suggest that further ecological study of naturally occurring EPN populations can yield significant insight to improve the practice and management of biological control of soil-dwelling insect pests.
  • Item
    A cross-system synthesis of herbivore and nutrient resource control on producer biomass
    (2008-07) Gruner, Daniel; Smith, Jennifer; Seabloom, Eric; Sandin, Stuart; Ngai, Jacqueline; Hillebrand, Helmut; Harpole, Stanley; Elser, James; Cleland, Elsa; Bracken, Matthew; Borer, Elizabeth; Bolker, Benjamin
    Nutrient availability and consumption by herbivores control the biomass of primary producer communities to varying degrees across ecosystems. Ecological theory, individual experiments in many different systems, and system-specific quantitative reviews have suggested that 1) bottom-up control is pervasive but top-down control is more influential in aquatic habitats relative to terrestrial systems, and 2) bottom-up and top-down forces often interact to synergize or dampen relative influences on producer biomass. We use a simple set of dynamic models to review mechanistic hypotheses for these questions, and compare model predictions to empirical data from a comprehensive meta-analysis of 191 factorial manipulations of herbivores and nutrients from freshwater, marine and terrestrial ecosystems. Parameterized model equilibria suggest that interactive outcomes should be weak and less common than strict additivity. Producer community biomass responded positively to fertilization across all systems, although effects were most pronounced in freshwater. Herbivores suppressed producer biomass in both freshwater and marine systems, but effects were inconsistent on land. Importantly, we observed a striking absence of either synergistic or dampening interactive effects of nutrients and herbivores across ecosystem types and within most habitats. Marine temperate rocky reef systems, which showed superadditive synergism of nutrient and herbivore controls, represented an exception to this pattern. Experimental studies showed limited support for emergent interactive effects on producer community-level biomass. We suggest that compensation by multiple herbivore guilds, top-down control of herbivores, spatial and temporal heterogeneity, and herbivore-mediated nutrient recycling tend to reduce the expectation for consistent interactive effects on producer biomass. Continuing studies should expand the temporal and spatial scales of experiments, particularly in understudied terrestrial systems; broaden factorial designs to manipulate independently both multiple producer resources (e.g. nitrogen, phosphorus, light) and multiple herbivore taxa or guilds (e.g. vertebrates and invertebrates); and simultaneously assess the effects on not only producer biomass but also species diversity, community composition and structure, and nutrient status.
  • Item
    Birds as predators in tropical agroforestry systems
    (2008-04) Van Bael, Sunshine; Philpott, Stacy; Greenberg, Russell; Bichier, Peter; Barber, Nicholas; Mooney, Kailen; Gruner, Daniel
    Insectivorous birds reduce arthropod abundances and their damage to plants in some, but not all, studies where predation by birds has been assessed. The variation in bird effects may be due to characteristics such as plant productivity or quality, habitat complexity, and/or species diversity of predator and prey assemblages. Since agroforestry systems vary in such characteristics, these systems provide a good starting point for understanding when and where we can expect predation by birds to be important. We analyze data from bird exclosure studies in forests and agroforestry systems to ask whether birds consistently reduce their arthropod prey base and whether bird predation differs between forests and agroforestry systems. Further, we focus on agroforestry systems to ask whether the magnitude of bird predation (1) differs between canopy trees and understory plants, (2) differs when migratory birds are present or absent, and (3) correlates with bird abundance and diversity. We found that, across all studies, birds reduce all arthropods, herbivores, carnivores, and plant damage. We observed no difference in the magnitude of bird effects between agroforestry systems and forests despite simplified habitat structure and plant diversity in agroforests. Within agroforestry systems, bird reduction of arthropods was greater in the canopy than the crop layer. Top-down effects of bird predation were especially strong during censuses when migratory birds were present in agroforestry systems. Importantly, the diversity of the predator assemblage correlated with the magnitude of predator effects; where the diversity of birds, especially migratory birds, was greater, birds reduced arthropod densities to a greater extent. We outline potential mechanisms for relationships between bird predator, insect prey, and habitat characteristics, and we suggest future studies using tropical agroforests as a model system to further test these areas of ecological theory.
  • Item
    Does species richness drive speciation? A reassessment with the Hawaiian biota
    (Ecography, 2008) Gruner, Daniel; Gotelli, Nicholas; Price, Jonathan; Cowie, Robert