Aerospace Engineering Research Works

Permanent URI for this collectionhttp://hdl.handle.net/1903/1655

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    Close Conjunction Detection on Parallel Computer
    (American Institute of Aeronautics and Astronautics, 1995-07) Healy, Liam
    Close conjunction detection is the task of finding which satellites will come within a given distance of other satellites. The algorithms described here are implemented on the Connection Machine (CM) in a program called CM-COMBO. It will find close conjunctions of satellites over a time range for one, a few, or all satellites against the original or another catalog and works with an arbitrary propagator. The problem of comparing an entire catalog against itself is beyond the computing power of current serial machines. This program does not prefilter any orbits and does not make assumptions about the type of orbit (that it be nearly circular, for instance). This paper describes the algorithm for this computation, the implementation on the CM, and resuls of several studies using this program.
  • Thumbnail Image
    Item
    Deterministic Studies of Debris Hazards with Parallel Processors
    (European Space Agency, 1993-04-05) Healy, Liam; Coffey, Shannon
    A new generation of parallel processing computers makes possible the ability to propagate all objects in the space surveillance catalog with simulated objects, and detect close approaches. With this capability, it is possible to test deterministically debris scenarios, without resorting to statistical models. To compare the positions of objects we have developed two methods, an all-to-all comparison and a one-to-all comparison. For the former, a seive significantly reduces computation time; for the latter, direct comparison is possible in parallel. We show results from several simulations, including simulated multiple sources of debris, hazard to the space station, and close contacts amongst the catalog itself, to show potential for debris studies. The techniques described here have potential application the general problem of catalog maintenance.
  • Thumbnail Image
    Item
    Parallel Computing for Space Surveillance
    (MIT Lincoln Laboratory, 1992) Healy, Liam; Coffey, Shannon
    This paper reports on an application of massively parallel processors to multiple satellite propagation and the calculation of miss distances between objects (COMBO). Unlike serial computations, we do not pre-filter the data but rather sort the data set in a way that dramatically cuts the number of comparisons required in order to be assured of a complete catalog-to-catalog comparison. The same general algorithm allows two logical sets to be compare to each other. Run time for this demonstration code on an 8K Connection Machine is about one second per time step, including propagation, complete catalog-to-catalog calculation of miss distances, plotting satellite positions, and recording of the miss distances to a file. Propagation of the objects is performed with an analytic propagator, using J2 only at present, though the code may easily be extended to other propagators. We demonstrate a second application of parallel computing to the problem of debris propagation resulting from a satellite breakup. The spread of such debris into n pieces is simulated by replicating the element set for the original satellite n times, then altering each to represent a distribution of velocities to the center of mass.