Biology Research Works
Permanent URI for this collectionhttp://hdl.handle.net/1903/13
Browse
2 results
Search Results
Item Genetic tools for the study of the mangrove killifish, Kryptolebias marmoratus, an emerging vertebrate model for phenotypic plasticity(Wiley, 2023-08-08) Li, Cheng-Yu; Boldt, Helena; Parent, Emily; Ficklin, Jax; James, Althea; Anlage, Troy J.; Boyer, Lena M.; Pierce, Brianna R.; Siegfried, Kellee R.; Harris, Matthew P.; Haag, Eric S.Kryptolebias marmoratus (Kmar), a teleost fish of the order Cyprinodontiformes, has a suite of unique phenotypes and behaviors not observed in other fishes. Many of these phenotypes are discrete and highly plastic—varying over time within an individual, and in some cases reversible. Kmar and its interfertile sister species, K. hermaphroditus, are the only known self-fertile vertebrates. This unusual sexual mode has the potential to provide unique insights into the regulation of vertebrate sexual development, and also lends itself to genetics. Kmar is easily adapted to the lab and requires little maintenance. However, its internal fertilization and small clutch size limits its experimental use. To support Kmar as a genetic model, we compared alternative husbandry techniques to maximize recovery of early cleavage-stage embryos. We find that frequent egg collection enhances yield, and that protease treatment promotes the greatest hatching success. We completed a forward mutagenesis screen and recovered several mutant lines that serve as important tools for genetics in this model. Several will serve as useful viable recessive markers for marking crosses. Importantly, the mutant kissylips lays embryos at twice the rate of wild-type. Combining frequent egg collection with the kissylips mutant background allows for a substantial enhancement of early embryo yield. These improvements were sufficient to allow experimental analysis of early development and the successful mono- and bi-allelic targeted knockout of an endogenous tyrosinase gene with CRISPR/Cas9 nucleases. Collectively, these tools will facilitate modern developmental genetics in this fascinating fish, leading to future insights into the regulation of plasticity.Item Fisher vs. the Worms: Extraordinary Sex Ratios in Nematodes and the Mechanisms that Produce Them(MDPI, 2021-07-15) Van Goor, Justin; Shakes, Diane C.; Haag, Eric S.Parker, Baker, and Smith provided the first robust theory explaining why anisogamy evolves in parallel in multicellular organisms. Anisogamy sets the stage for the emergence of separate sexes, and for another phenomenon with which Parker is associated: sperm competition. In outcrossing taxa with separate sexes, Fisher proposed that the sex ratio will tend towards unity in large, randomly mating populations due to a fitness advantage that accrues in individuals of the rarer sex. This creates a vast excess of sperm over that required to fertilize all available eggs, and intense competition as a result. However, small, inbred populations can experience selection for skewed sex ratios. This is widely appreciated in haplodiploid organisms, in which females can control the sex ratio behaviorally. In this review, we discuss recent research in nematodes that has characterized the mechanisms underlying highly skewed sex ratios in fully diploid systems. These include self-fertile hermaphroditism and the adaptive elimination of sperm competition factors, facultative parthenogenesis, non-Mendelian meiotic oddities involving the sex chromosomes, and environmental sex determination. By connecting sex ratio evolution and sperm biology in surprising ways, these phenomena link two “seminal” contributions of G. A. Parker.