Atmospheric & Oceanic Science Theses and Dissertations

Permanent URI for this collectionhttp://hdl.handle.net/1903/2747

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    EXAMINATION OF PHOTOCHEMISTRY AND METEOROLOGY OF ATMOSPHERIC POLLUTANTS FROM THE NORTH CHINA PLAIN
    (2020) Benish, Sarah Elizabeth; Dickerson, Russell R; Atmospheric and Oceanic Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Increasingly severe air pollution over metropolitan regions in China has raised attention in light of its local and regional impacts on health and climate. Computer models can simulate complex interactions between photochemistry and meteorology to inform policy decisions in reducing ground-level pollution. However, models rely on an accurate portrayal of emissions that often possess large uncertainties over regions with evolving pollution characteristics. This work is comprised of a quantitative analysis of air pollutants in the North China Plain that strives to improve such uncertainties by identification of important sources and meteorological conditions for pollution through the combination of observations and models. Measurements used in this dissertation focus on in situ observations from the Spring 2016 Air chemistry Research in Asia (ARIAs) campaign, which sampled atmospheric composition across the heavily populated and industrialized Hebei Province in the North China Plain. High amounts of ozone (O3) precursors were found throughout and even above the planetary boundary layer, continuing to generate O3 at high rates to be potentially transported downwind. Evidence for the importance of anthropogenic VOCs on O3 production is presented. Concentrations of NOx and VOCs even in the rural areas of this highly industrialized province promote widespread O3 production and in order to improve air quality over Hebei, both NOx and VOCs should be regulated. The ARIAs airborne measurements also provide a critical opportunity to characterize chlorofluorocarbons (CFCs) over a suspected CFC-11 source region in China, finding mixing ratios were well above 2016 global background levels. Based on correlations of CFCs with compounds used in their manufacture, I identify likely source regions of new CFCs production and release, in violation of the Montreal Protocol. Finally, I examine the influence of meteorology on surface and aloft measurements during ARIAs. A multiday persistent high pressure episode is presented as a case study to examine the influence of regional transport on air quality measured during ARIAs. This dissertation provides valuable information for understanding one of the most polluted regions in China. Coordinated field and modeling efforts can together provide scientific guidance to inform pollution control measures to meet air quality targets in China.
  • Item
    Air Pollution Response to Changing Weather and Power Plant Emissions in the Eastern United States
    (2008-11-20) Bloomer, Bryan Jaye; Dickerson, Russell R; Atmospheric and Oceanic Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Air pollution in the eastern United States causes human sickness and death as well as damage to crops and materials. NOX emission reduction is observed to improve air quality. Effectively reducing pollution in the future requires understanding the connections between smog, precursor emissions, weather, and climate change. Numerical models predict global warming will exacerbate smog over the next 50 years. My analysis of 21 years of CASTNET observations quantifies a climate change penalty. I calculate, for data collected prior to 2002, a climate penalty factor of ~3.3 ppb O3/°C across the power plant dominated receptor regions in the rural, eastern U.S. Recent reductions in NOX emissions decreased the climate penalty factor to ~2.2 ppb O3/°C. Prior to 1995, power plant emissions of CO2, SO2, and NOX were estimated with fuel sampling and analysis methods. Currently, emissions are measured with continuous monitoring equipment (CEMS) installed directly in stacks. My comparison of the two methods show CO2 and SO2 emissions are ~5% lower when inferred from fuel sampling; greater differences are found for NOX emissions. CEMS are the method of choice for emission inventories and commodity trading and should be the standard against which other methods are evaluated for global greenhouse gas trading policies. I used CEMS data and applied chemistry transport modeling to evaluate improvements in air quality observed by aircraft during the North American electrical blackout of 2003. An air quality model produced substantial reductions in O3, but not as much as observed. The study highlights weaknesses in the model as commonly used for evaluating a single day event and suggests areas for further investigation. A new analysis and visualization method quantifies local-daily to hemispheric-seasonal scale relationships between weather and air pollution, confirming improved air quality despite increasing temperatures across the eastern U.S. Climate penalty factors indicate amplified smog formation in areas of the world with rising temperatures and increasing emissions. Tools developed in this dissertation provide data for model evaluation and methods for establishing air quality standards with an adequate margin of safety for cleaning the air and protecting the public's health in a world with changing climate.