Chemical and Biomolecular Engineering Research Works

Permanent URI for this collectionhttp://hdl.handle.net/1903/1656

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Experimental evidence and isotopomer analysis of mixotrophic glucose metabolism in the marine diatom Phaeodactylum tricornutum
    (Springer Nature, 2013-11-14) Zheng, Yuting; Quinn, Andrew H; Sriram, Ganesh
    Heterotrophic fermentation using simple sugars such as glucose is an established and cost-effective method for synthesizing bioproducts from bacteria, yeast and algae. Organisms incapable of metabolizing glucose have limited applications as cell factories, often despite many other advantageous characteristics. Therefore, there is a clear need to investigate glucose metabolism in potential cell factories. One such organism, with a unique metabolic network and a propensity to synthesize highly reduced compounds as a large fraction of its biomass, is the marine diatom Phaeodactylum tricornutum (Pt). Although Pt has been engineered to metabolize glucose, conflicting lines of evidence leave it unresolved whether Pt can natively consume glucose. Isotope labeling experiments in which Pt was mixotrophically grown under light on 100% U-13C glucose and naturally abundant (~99% 12C) dissolved inorganic carbon resulted in proteinogenic amino acids with an average 13C-enrichment of 88%, thus providing convincing evidence of glucose uptake and metabolism. The dissolved inorganic carbon was largely incorporated through anaplerotic rather than photosynthetic fixation. Furthermore, an isotope labeling experiment utilizing 1-13C glucose and subsequent metabolic pathway analysis indicated that (i) the alternative Entner-Doudoroff and Phosphoketolase glycolytic pathways are active during glucose metabolism, and (ii) during mixotrophic growth, serine and glycine are largely synthesized from glyoxylate through photorespiratory reactions rather than from 3-phosphoglycerate. We validated the latter result for mixotrophic growth on glycerol by performing a 2-13C glycerol isotope labeling experiment. Additionally, gene expression assays showed that known, native glucose transporters in Pt are largely insensitive to glucose or light, whereas the gene encoding cytosolic fructose bisphosphate aldolase 3, an important glycolytic enzyme, is overexpressed in light but insensitive to glucose. We have shown that Pt can use glucose as a primary carbon source when grown in light, but cannot use glucose to sustain growth in the dark. We further analyzed the metabolic mechanisms underlying the mixotrophic metabolism of glucose and found isotopic evidence for unusual pathways active in Pt. These insights expand the envelope of Pt cultivation methods using organic substrates. We anticipate that they will guide further engineering of Pt towards sustainable production of fuels, pharmaceuticals, and platform chemicals.
  • Item
    NetFlow: A tool for isolating carbon flows in genome-scale metabolic networks
    (Elsevier, 2021-06) Mack, Sean G.; Sriram, Ganesh
    Genome-scale stoichiometric models (GSMs) have been widely utilized to predict and understand cellular metabolism. GSMs and the flux predictions resulting from them have proven indispensable to fields ranging from metabolic engineering to human disease. Nonetheless, it is challenging to parse these flux predictions due to the inherent size and complexity of the GSMs. Several previous approaches have reduced this complexity by identifying key pathways contained within the genome-scale flux predictions. However, a reduction method that overlays carbon atom transitions on stoichiometry and flux predictions is lacking. To fill this gap, we developed NetFlow, an algorithm that leverages genome-scale carbon mapping to extract and quantitatively distinguish biologically relevant metabolic pathways from a given genome-scale flux prediction. NetFlow extends prior approaches by utilizing both full carbon mapping and context-specific flux predictions. Thus, NetFlow is uniquely able to quantitatively distinguish between biologically relevant pathways of carbon flow within the given flux map. NetFlow simulates 13C isotope labeling experiments to calculate the extent of carbon exchange, or carbon yield, between every metabolite in the given GSM. Based on the carbon yield, the carbon flow to or from any metabolite or between any pair of metabolites of interest can be isolated and readily visualized. The resulting pathways are much easier to interpret, which enables an in-depth mechanistic understanding of the metabolic phenotype of interest. Here, we first demonstrate NetFlow with a simple network. We then depict the utility of NetFlow on a model of central carbon metabolism in E. coli. Specifically, we isolated the production pathway for succinate synthesis in this model and the metabolic mechanism driving the predicted increase in succinate yield in a double knockout of E. coli. Finally, we describe the application of NetFlow to a GSM of lycopene-producing E. coli, which enabled the rapid identification of the mechanisms behind the measured increases in lycopene production following single, double, and triple knockouts.