Biology Theses and Dissertations

Permanent URI for this collectionhttp://hdl.handle.net/1903/2749

Browse

Search Results

Now showing 1 - 8 of 8
  • Thumbnail Image
    Item
    Characterizing nutrient budgets on and beyond farms for sustainable nutrient management
    (2023) Zou, Tan; Zhang, Xin; Marine-Estuarine-Environmental Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    The production and security of food are heavily reliant on adequate nitrogen (N) and phosphorus (P) inputs in agriculture. However, ineffective management of N and P from the farm to the table can result in nutrient pollution, triggering both environmental and social issues. Moreover, another important challenge for P management is limited and unevenly distributed P resources, leading to P scarcity in many parts of the world. Inefficient use of nutrients in agriculture-food systems is the root cause of both nutrient pollution and scarcity. To improve nutrient use efficiency and reduce nutrient loss, it is crucial to address key knowledge gaps in nutrient management research, which include inadequate quantification of nutrient budgets, as well as identifying and addressing nutrient management challenges across various systems and spatial scales. This dissertation tackles the knowledge gaps in two studies, including a global-scale study and a case study of the Chesapeake Bay watershed. In the global-scale study, I establish and utilize a unique P budget database to assess historical P budget and usage patterns at the national and crop type level from 1961 to 2019. This analysis reveals the impacts of various agricultural and socioeconomic drivers on cropland P use efficiency (PUE), including N use efficiency (NUE), fertilizer-to-crop-price ratio, farm size, crop mix, and agricultural machinery. The findings indicate that P management challenges vary by country and spatial scale, necessitating tailored country-level strategies. The regional-scale study applies a framework adapted from N studies to the Chesapeake Bay watershed, analyzing nutrient (N and P) management across systems and spatial scales. This approach uncovers that nutrient loss potential beyond crop farms is larger than that at crop farms. This highlights the need to enhance nutrient management and curb nutrient loss in animal production, food processing and retail, and human consumption. This study also identifies a large potential for meeting cropland nutrient demand by increasing the recycling of nutrients in manure, food waste, and human waste. To tackle the challenges surrounding nutrient management in the watershed, it is imperative to target factors significantly related to nutrient management, such as agricultural practices, soil properties, climate change, and socioeconomic conditions. This dissertation contributes to a deeper understanding of N and P management challenges, gaps, priorities, hidden drivers, and potential solutions at various scales, from regional to national and global levels. The analytical procedures and statistical tools developed in this dissertation are generalizable, allowing for their adaptation to similar nutrient management studies in different regions and for diverse research purposes.
  • Thumbnail Image
    Item
    Dynamics of a large submersed plant bed in upper Chesapeake Bay
    (2016) Gurbisz, Cassie; Kemp, Michael; Marine-Estuarine-Environmental Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    A large SAV bed in upper Chesapeake Bay has experienced several abrupt shifts over the past half-century, beginning with near-complete loss after a record-breaking flood in 1972, followed by an unexpected, rapid resurgence in the early 2000’s, then partial decline in 2011 following another major flood event. Together, these trends and events provide a unique opportunity to study a recovering SAV ecosystem from several different perspectives. First, I analyzed and synthesized existing time series datasets to make inferences about what factors prompted the recovery. Next, I analyzed existing datasets, together with field samples and a simple hydrodynamic model to investigate mechanisms of SAV bed loss and resilience to storm events. Finally, I conducted field deployments and experiments to explore how the bed affects internal physical and biogeochemical processes and what implications those effects have for the dynamics of the system. I found that modest reductions in nutrient loading, coupled with several consecutive dry years likely facilitated the SAV resurgence. Furthermore, positive feedback processes may have played a role in the sudden nature of the recovery because they could have reinforced the state of the bed before and after the abrupt shift. I also found that scour and poor water clarity associated with sediment deposition during the 2011 flood event were mechanisms of plant loss. However, interactions between the bed, water flow, and waves served as mechanisms of resilience because these processes created favorable growing conditions (i.e., clear water, low flow velocities) in the inner core of the bed. Finally, I found that that interactions between physical and biogeochemical processes led to low nutrient concentrations inside the bed relative to outside the bed, which created conditions that precluded algal growth and reinforced vascular plant dominance. This work demonstrates that positive feedbacks play a central role in SAV resilience to both chronic eutrophication as well as acute storm events. Furthermore, I show that analysis of long-term ecological monitoring data, together with field measurements and experiments, can be an effective approach for understanding the mechanisms underlying ecosystem dynamics.
  • Thumbnail Image
    Item
    STUDIES OF PERIPHYTIC ALGAE ON ALGAL TURF SCRUBBERSTM ALONG THE CHESAPEAKE BAY: COMMUNITY STRUCTURE, SYSTEMATICS, AND INFLUENCING FACTORS
    (2012) Laughinghouse, Haywood Dail; Kangas, Patrick C; Marine-Estuarine-Environmental Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    This is an ecological and systematic study of periphytic algae growing in an ecologically-engineered system used for water quality improvement: the Algal Turf Scrubber or ATSTM. This technology consists of an attached algal community growing on screens in a shallow floway through which water is pumped. The study was conducted on small-scale, experimental floways at three sites within the Chesapeake Bay watershed: on the Susquehanna River in southeastern Pennsylvania (freshwater) and on the Great Wicomico and York Rivers in Virginia (brackish water). A total of 330 taxa were identified at the sites from 2008-2011. The majority of taxa at all three sites belonged to the phylum Bacillariophyta, but a large number of taxa from Chlorophyta and, to a lesser degree, Cyanobacteria were also found at the freshwater site. Algae found in the ATSTM exhibited a diversity of life forms and modes of attachment within the community. Although these system appear to be dominated by a "canopy" of attached, filamentous species, more than half of the total abundance (cell density) were solitary, unattached taxa that grow as an "understory" within the three dimensional structure of the community. Longitudinal patterns were examined on the longest floways (90 m long) at the freshwater site. The community nutrient uptake rate (mass of nitrogen or phosphorus m-2 day-1) for the harvested algal biomass was found to decline from the top to the bottom of the floway for a system constructed at 2% slope but no distinct pattern was found for a system constructed at 1% slope. The majority of algal taxa were evenly distributed along the floway from top to the bottom, in terms of frequency of occurrence, suggesting a general lack of longitudinal specialization within the community. A detailed review of the systematics of the Order Oscillatoriales (Cyanobacteria) found on the ATSTM was undertaken since this group has not been studied much in the Chesapeake Bay watershed. Twenty-four taxa were examined, described morphologically and their nomenclature reviewed. Comparing 16s rRNA gene analyses of planktonic and periphytic Pseudanabaena, it was suggested that periphytic Pseudanabaena be revised and elevated to a new genus, Ilyonema.
  • Thumbnail Image
    Item
    Watershed land use and nutrient dynamics in Maryland Coasal Bays, U.S.A.
    (2008) Beckert, Kristen A.; O'Neil, Judith M.; Marine-Estuarine-Environmental Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Upstream and inshore regions of the Maryland Coastal Bays exhibit degraded water quality. Six streams and three shallow bays were sampled in May and July 2006 and 2007 to compare spatial patterns in relation to land use and nutrient loading. St. Martin River, having a high percentage of crop agriculture and a low percentage of forest and wetlands, experienced the most degraded water quality of the three regions, and stream total nitrogen in its watershed was linked to feeding operations and anthropogenic land use. Despite having a much less developed watershed, Johnson Bay experienced degraded water quality, especially in inshore regions. Sinepuxent Bay had the best water quality of the three bays, but still demonstrated anthropogenic impacts. Nutrient loading from land use is directly related to the observed patterns in St. Martin River, while residence time, groundwater flows, and within-bay cycling has led to water quality degradation in Johnson Bay.
  • Thumbnail Image
    Item
    Plant-sediment Interactions and Biogeochemical Cycling for Seagrass Communities in Chesapeake and Florida Bays
    (2007-12-17) Nagel, Jessica; Kemp, William M; Marine-Estuarine-Environmental Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Seagrasses are prominent, productive components of shallow coastal ecosystems worldwide. The role of seagrasses in biogeochemical cycling varies widely across ecosystems, and this is due in large part to the complex interactions and feedbacks among processes controlling dynamics of carbon, oxygen, nutrients, and dissolved organic matter (DOM). This dissertation examines the importance of the keystone seagrass species, Thalassia testudinum, to biogeochemical cycling at the community and ecosystem levels in Florida Bay. The research presented here also describes the consequence of disturbances, such as shifts in species composition and seagrass dieback, on biogeochemical processes in both Florida and Chesapeake Bays. In Florida Bay, T. testudinum was shown to stimulate sediment microbial activities and benthic production of oxygen, inorganic nitrogen, and DOM relative to adjacent benthic communities without seagrass but containing benthic microalgae. Strong diel patterns in net fluxes of these solutes in both communities underscore the importance of photosynthesis. Ecosystem-level production (P) and respiration (R) rates were also enhanced in T. testudinum communities. Clear seasonal and regional variations in P and R were evident across Florida Bay, with lowest rates reported in the northern regions. Seagrass dieback had a negative effect on sediment nitrification rates and net ecosystem production (P-R) at one site in Florida Bay, and loss of seagrass habitat may result in significant changes to biogeochemical budgets within this system. In mesohaline Chesapeake Bay, the ephemeral submersed plant species, Ruppia maritima was also shown to stimulate organic production, nutrient cycling, and sediment biogeochemical processes compared to benthic communities without seagrass; however, the more persistent native species, Potamogeton perfoliatus, had an even greater impact on these processes. Collectively, the results of this research reveal the potential significance of seagrass to biogeochemical cycling in Chesapeake and Florida Bays and suggest that disturbances, such as seagrass dieback or shifts in species composition, may substantially alter biogeochemical budgets within these systems.
  • Thumbnail Image
    Item
    The roles of nutrients and herbivory in controlling the microbioerosion of tropical reefs
    (2007-08-31) Silva, Marina Carreiro; Mihursky, Joseph A; Marine-Estuarine-Environmental Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Coral reefs worldwide are suffering degradation from increasing fishing pressure, pollution, diseases, and coral bleaching. One important ecological consequence of such degradation is an increase in biological erosion, or bioerosion, of the coral framework by boring and grazing organisms. Therefore, it has become essential to understand the factors that control the processes and agents of bioerosion. The aim of my dissertation is to understand how organic and inorganic nutrients and herbivory affect the bioerosion of carbonate substrates by microbial endolithic organisms (bacteria, fungi and algae), an often overlooked component of bioerosion processes in coral reefs. Results of controlled experiments using herbivore-exclusion cages and fertilizers at Glovers Reef, Belize consistently showed significant effect of nutrients in stimulating microbial endoliths' substrate colonization and bioerosion rates of Strombus gigas shells. The addition of inorganic nutrients increased bioerosion rates by a factor of 8 to 15 in comparison to control treatments. Changes in nutrient ratios changed microbial endolithic community structure. The addition of nitrogen alone or in combination with phosphorus stimulated green algae, the addition of phosphorus alone stimulated cyanobacteria, and the addition of organic matter alone stimulated fungi. The inclusion of herbivores reduced observed bioerosion rates by half, demonstrating the importance of herbivory in modifying bioerosion processes. Field experiments on the relationship between water quality and the amount of microbioerosion in Lambis chiragra shells in nine coral reefs in East Africa demonstrated that other factors within reefs may interact with nutrients in determining bioerosion rates. Results suggested that epilithic algal cover, particularly crustose coralline algae, may decrease microborer colonization and bioerosion rates by reducing light conditions within substrates, so that no direct effects of nutrients on bioerosion rates are detected. A critical review of the evidence for nutrients as a primary control of bioerosion by different bioeroder groups (microborers, macroborers, and grazers) suggests that macroborer abundances reflect increases in nutrient conditions and may therefore represent a useful indicator of eutrophication and coral reef "health". This dissertation contributes to a better understanding of the factors affecting bioerosion by microbial endolithic organisms, which are important but often overlooked agents of bioerosion in coral reefs.
  • Thumbnail Image
    Item
    The regulation of bacterioplankton carbon metabolism in a temperate salt-marsh system
    (2005-09-21) Apple, Jude Kolb; del Giorgio, Paul A.; Kemp, W. Michael; Marine-Estuarine-Environmental Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    This study describes an investigation of the factors regulating spatial and temporal variability of bacterioplankton carbon metabolism in aquatic ecosystems using the tidal creeks of a temperate salt-marsh estuary as a study site. Differences in land-use and landscape characteristics in the study site (Monie Bay) generate strong predictable gradients in environmental conditions among and within the tidal creeks, including salinity, nutrients, and the quality and quantity of dissolved organic matter (DOM). A 2-yr study of bacterioplankton metabolism in this system revealed a general positive response to system-level nutrient enrichment, although this response varied dramatically when tidal creeks differing in salinity were compared. Of the numerous environmental parameters investigated, temperature and organic matter quality had the greatest influence on carbon metabolism. All measures of carbon consumption (i.e., bacterioplankton production (BP), respiration (BR) and total carbon consumption (BCC)) exhibited significant positive temperature dependence, but the disproportionate effect of temperature on BP and BR resulted in the negative temperature dependence of bacterioplankton growth efficiency (BGE = BP/[BP+BR]). Dissolved organic matter also had an influence on carbon metabolism, with higher BCC and BGE generally associated with DOM of greater lability. Our exploration of factors driving this pattern suggests that the energetic content and lability of DOM may be more important than nutrient content or dissolved nutrients alone in determining the magnitude and variability of BGE. Investigations of single-cell activity revealed that BCC and BGE may be further modulated by the abundance, proportion, and activity of highly-active cells. Differences in single-cell activity among creeks differing in freshwater input also imply that other cellular-level properties (e.g., phylogenetic composition) may be an important factor. Collectively, results from this research indicate that the variability of bacterioplankton carbon metabolism in temperate estuarine systems represents a complex response to a wide range of environmental and biological factors, of which temperature and DOM quality appear to be the most important. Furthermore, this research reveals fundamental differences in both cellular and community-level metabolic processes when freshwater and marine endmembers of estuaries are compared that may contribute to the variability in bacterioplankton carbon metabolism within and among estuarine systems.
  • Thumbnail Image
    Item
    Vegetation and Nutrient Dynamics of Forested Riparian Wetlands in Agricultural Settings
    (2005-05-03) Herbert, Rachel; Baldwin, Andrew H; Marine-Estuarine-Environmental Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Exported agricultural nutrients have been a major supply of excess nutrients into the environment. Riparian wetlands may play an important part in mitigating these nutrients and thus preventing them from migrating downstream in high concentrations. Two riparian wetland systems, one was influenced by agriculture (agricultural site) and one was not (reference site), were studied in Maryland. Both the plant community structure and abiotic factors were studied. The agricultural site had lower overall species richness and tree diversity than the reference site. Also the tree leaf litter and herbaceous leaves at the agricultural site had higher nitrogen and phosphorus concentrations and higher productivity based on fixed carbon than the reference site. Two nutrient enrichment experiments were conducted at the reference site to determine the nature of nutrient limitation. The results from these studies indicate that both plant communities are nitrogen limited. Furthermore, individual species showed a response to increased nutrients.