Biology Theses and Dissertations
Permanent URI for this collectionhttp://hdl.handle.net/1903/2749
Browse
3 results
Search Results
Item The long-term change of Chesapeake Bay hypoxia: impacts of eutrophication, nutrient management and climate change(2019) Ni, Wenfei; Li, Ming; Marine-Estuarine-Environmental Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Eutrophication-induced coastal hypoxia can result in stressful habitat for marine living resources and cause great economic losses. Nutrient management strategies have been implemented in many coastal systems to improve water quality. However, the outcomes to mitigate hypoxia have been mixed and usually small when only modest nutrient load reduction was achieved. Meanwhile, there has been increasing recognition of climate change impacts on estuarine hypoxia, given estuaries are especially vulnerable to climate change with multiple influences from river, ocean and the atmosphere. Due to the limitation of observational studies and the lack of continuous historical data, long-term oxygen dynamics in response to the changes of external forces are still not well understood. This study utilized a numerical model to quantitatively investigate a century of change of Chesapeake Bay hypoxia in response to varying external forces in nutrient inputs and climate. With intensifying eutrophication since 1950, model results suggest an abrupt increase in volume and duration of hypoxia from 1950s-1960s to 1970s-1980s. This turning point of hypoxia might be related with Tropical Storm Agnes and consecutive wet years with relatively small summer wind speed. During 1985-2016 when the riverine nutrient inputs were modestly decreased, the simulated bottom dissolved oxygen exhibited a statistically significant declining trend of ~0.01 mgL-1yr-1 which mostly occurred in winter and spring. Warming was found to be the dominant driver of the long-term oxygen decline whereas sea level rise had a minor effect. Warming has overcome the benefit of nutrient reduction in Chesapeake Bay to diminish hypoxia over the past three decades. By the mid-21st century, the hypoxic and anoxic volumes are projected to increase by 10-30% in Chesapeake Bay if the riverine nutrient inputs are maintained at high level as in 1990s. Sea level rise and larger winter-spring runoff will generate stronger stratification and large reductions in the vertical oxygen supply to the bottom water. The future warming will lead to earlier initiation of hypoxia, accompanied by weaker summer respiration and more rapid termination of hypoxia. The findings of this study can help guide climate adaptation strategies and nutrient load abatement in Chesapeake Bay and other hypoxic estuaries.Item DISSOLVED OXYGEN AND NUTRIENT CYCLING IN CHESAPEAKE BAY: AN EXAMINATION OF CONTROLS AND BIOGEOCHEMICAL IMPACTS USING RETROSPECTIVE ANALYSIS AND NUMERICAL MODELS(2013) Testa, Jeremy Mark; Kemp, William M; Marine-Estuarine-Environmental Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Hypoxia, or the condition of low dissolved oxygen levels, is a topic of interest throughout aquatic ecology. Hypoxia has both realized and potential impacts on biogeochemical cycles and many invertebrate and vertebrate animal populations; the majority of the impacts being negative. It is apparent that the extent and occurrence of hypoxic conditions has been on the rise globally, despite a handful of reductions due to management success stories. Efforts to curb the development of hypoxia are well underway in many aquatic ecosystems worldwide, where oxygen levels are a key target for water quality management. Long-term increases in the volume of seasonal bottom-water hypoxia have been observed in Chesapeake Bay. Although there is evidence for the occurrence of low oxygen conditions following initial European habitation of the Chesapeake watershed, as well as direct observations of anoxia prior to the mid 20th century large-scale nutrient load increases, it is clear that hypoxic volume has increased over the last 50 years. Surprisingly, the volume of hypoxia observed for a given nutrient load has doubled since the mid-1980s, suggesting the importance of hypoxia controls beyond nutrient loading alone. I conducted a suite of retrospective data analyses and numerical modeling studies to understand the controls on and consequences of hypoxia in Chesapeake Bay over multiple time and space scales. The doubling of hypoxia per unit TN load was associated with an increase in bottom-water inorganic nitrogen and phosphorus concentrations, suggesting the potential for a positive feedback, where hypoxia-induced increases in N and P recycling support higher summer algal production and subsequent O2 consumption. I applied a two-layer sediment flux model at several stations in Chesapeake Bay, which revealed that hypoxic conditions substantially reduce coupled nitrification-denitrification and phosphorus sorption to iron oxyhydroxides, leading to the elevated sediment-water N and P fluxes that drive this feedback. An analysis of O2 dynamics during the winter-spring indicate that the day of hypoxia onset and the rate of March-May water-column O2 depletion are most strongly correlated to chlorophyll-a concentrations in bottom water; this suggests that the spring bloom drives early season O2 depletion. Metrics of winter-spring O2 depletion were un-correlated with summer hypoxic volumes, however, suggesting that other controls (including physical forcing and summer algal production) are important. I used a coupled hydrodynamic-biogeochemical model for Chesapeake Bay to quantify the extent to which summer algal production is necessary to maintain hypoxia throughout the summer, and that nutrient load-induced increases in hypoxia are driven by elevated summer respiration in the water-column of lower-Bay regions.Item Watershed land use and nutrient dynamics in Maryland Coasal Bays, U.S.A.(2008) Beckert, Kristen A.; O'Neil, Judith M.; Marine-Estuarine-Environmental Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Upstream and inshore regions of the Maryland Coastal Bays exhibit degraded water quality. Six streams and three shallow bays were sampled in May and July 2006 and 2007 to compare spatial patterns in relation to land use and nutrient loading. St. Martin River, having a high percentage of crop agriculture and a low percentage of forest and wetlands, experienced the most degraded water quality of the three regions, and stream total nitrogen in its watershed was linked to feeding operations and anthropogenic land use. Despite having a much less developed watershed, Johnson Bay experienced degraded water quality, especially in inshore regions. Sinepuxent Bay had the best water quality of the three bays, but still demonstrated anthropogenic impacts. Nutrient loading from land use is directly related to the observed patterns in St. Martin River, while residence time, groundwater flows, and within-bay cycling has led to water quality degradation in Johnson Bay.