Biology Theses and Dissertations

Permanent URI for this collectionhttp://hdl.handle.net/1903/2749

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    ECOLOGICAL SIGNIFICANCE OF DISSOLVED ORGANIC MATTER COMPOSITION AND REACTIVITY IN DEPRESSIONAL FRESHWATER WETLANDS
    (2022) Armstrong, Alec William; Palmer, Margaret; Gonsior, Michael; Marine-Estuarine-Environmental Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Dissolved organic matter (DOM) plays a central role in the biogeochemistry of aquatic ecosystems and is an important flux of carbon (C) from terrestrial to aquatic systems. Wetlands are rich sources of DOM to downstream waters, but the origins of wetland DOM and its role in biogeochemical processes in wetlands and downstream are not fully understood. To better understand the role of wetlands in mediating the movement and transformation of organic matter between terrestrial and aquatic ecosystems, I characterized the chemical composition and the microbial and photochemical reactivity of wetland DOM in a depressional wetland setting in the interior Delmarva Peninsula. I used laboratory experiments to understand DOM reactivity. I characterized sensitivity to photodegradation, concluding most wetland DOM was somewhat sensitive though site differences affected sensitivity. In another experiment, wetland DOM showed little biodegradability, but C losses to microbes were enhanced after photodegradation. This suggested photochemical and biological degradation may have interacted to influence wetland DOM composition within wetlands and in downstream waters. I also found terrestrial sources of DOM (plant and soil leachates) were more biodegradable than wetland surface water. I concluded wetland DOM was largely comprised of leftover material from previous microbial metabolism in soils or wetland water. To characterize wetland DOM and explore its environmental influences, I undertook a field sampling campaign of 22 wetlands over 18 months. Samples were characterized using a suite of DOM measurements, and variability in these data was modeled using water level, regional air temperature, a proxy for site canopy cover, estimated photosynthetically active radiation, and others. DOM varied considerably seasonally and among sites, and modeling suggested that complex seasonal and site-related interactions influenced DOM, not including water level. This research indicates that depressional freshwater wetlands accumulate and process DOM, some of it likely originating from soils and some within wetlands, but spatial and seasonal variability lead to DOM variability. Wetland DOM exported to downstream waters has intrinsically low biodegradability, though this may be enhanced by photodegradation downstream. This research may be useful for efforts to improve representation of depressional freshwater wetlands in mineral soils in C cycle models and inform policy concerned with wetland biogeochemical functions and connections with downstream waters.
  • Thumbnail Image
    Item
    The regulation of bacterioplankton carbon metabolism in a temperate salt-marsh system
    (2005-09-21) Apple, Jude Kolb; del Giorgio, Paul A.; Kemp, W. Michael; Marine-Estuarine-Environmental Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    This study describes an investigation of the factors regulating spatial and temporal variability of bacterioplankton carbon metabolism in aquatic ecosystems using the tidal creeks of a temperate salt-marsh estuary as a study site. Differences in land-use and landscape characteristics in the study site (Monie Bay) generate strong predictable gradients in environmental conditions among and within the tidal creeks, including salinity, nutrients, and the quality and quantity of dissolved organic matter (DOM). A 2-yr study of bacterioplankton metabolism in this system revealed a general positive response to system-level nutrient enrichment, although this response varied dramatically when tidal creeks differing in salinity were compared. Of the numerous environmental parameters investigated, temperature and organic matter quality had the greatest influence on carbon metabolism. All measures of carbon consumption (i.e., bacterioplankton production (BP), respiration (BR) and total carbon consumption (BCC)) exhibited significant positive temperature dependence, but the disproportionate effect of temperature on BP and BR resulted in the negative temperature dependence of bacterioplankton growth efficiency (BGE = BP/[BP+BR]). Dissolved organic matter also had an influence on carbon metabolism, with higher BCC and BGE generally associated with DOM of greater lability. Our exploration of factors driving this pattern suggests that the energetic content and lability of DOM may be more important than nutrient content or dissolved nutrients alone in determining the magnitude and variability of BGE. Investigations of single-cell activity revealed that BCC and BGE may be further modulated by the abundance, proportion, and activity of highly-active cells. Differences in single-cell activity among creeks differing in freshwater input also imply that other cellular-level properties (e.g., phylogenetic composition) may be an important factor. Collectively, results from this research indicate that the variability of bacterioplankton carbon metabolism in temperate estuarine systems represents a complex response to a wide range of environmental and biological factors, of which temperature and DOM quality appear to be the most important. Furthermore, this research reveals fundamental differences in both cellular and community-level metabolic processes when freshwater and marine endmembers of estuaries are compared that may contribute to the variability in bacterioplankton carbon metabolism within and among estuarine systems.