Biology Theses and Dissertations
Permanent URI for this collectionhttp://hdl.handle.net/1903/2749
Browse
2 results
Search Results
Item Biogeographic, Geochemical, and Paleoceanographic Investigations of Ostracodes in the Bering, Chukchi, and Beaufort Seas(2022) Gemery, Laura; Cooper, Lee W.; Marine-Estuarine-Environmental Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)In this study, I investigated the continental shelf environments of the Bering, Chukchi, and Beaufort Seas using species of Ostracoda and their shell chemistry as indicators of oceanographic conditions and change. Ostracodes are bivalved Crustacea that secrete a calcareous shell commonly preserved in sediments in the Arctic. Because ostracode species have survival limits controlled by temperature, salinity, oxygen, sea ice, food, and other habitat-related factors, they are useful ecological indicators. A primary objective of my dissertation research was to establish how their ecology, biogeography and shell geochemistry is related to ocean variability in water mass properties and productivity at high latitudes. First, I examined community assemblages of ostracodes over several decades (1970-2018) in the northern Bering, Chukchi, and Beaufort Seas, and the main environmental factors that affect their biogeography. Results showed that large-scale south-to-north and small-scale nearshore-offshore gradients in ostracode community structure were tied to changes in water mass properties in combination with food sources and sediment substrate. Although the dominant species did not significantly change over the investigated period, the frequency of two cold-temperate species that are primarily and previously restricted to shallow North Pacific sediments off Asia has increased during the last decade. This suggests that these species are responding to recent increases in coastal and mid-shelf bottom water temperatures and/or carbon flux to the benthos. A second goal was to assess the feasibility of using stable oxygen isotopes (δ18O) of carbonate from ostracode shells as paleoceanographic proxies for water mass identification on Arctic and subarctic continental shelves. Through the use of regression analyses, I established that the δ18O values of carbonates from two species (of five investigated) can be reliable recorders of summer water mass changes in temperature and seawater δ18O content. The third part of the study was to use results from these prior two goals in combination with data on biogenic silica, foraminifera assemblages and stable isotope composition of biogenic carbonates, to reconstruct 2,000 years of paleoceanography from a radiocarbon-dated sediment core on the Mackenzie Shelf of the Beaufort Sea. This high-resolution (sub-centennial) record identified shifts in multiple proxies that are related to climate oscillations such as the Medieval Climate Anomaly, the Little Ice Age, and the modern period of anthropogenic change. The overall findings of my dissertation research support the premise that on complex and dynamic continental shelves, paleoceanographic uncertainties can be addressed by documenting microfossil faunal assemblages, measuring stable isotope variability in microfossil carbonates, as well as relating the distribution of species in time with an understanding of species ecology.Item A Molecular and Isotopic Approach to Examine the Role of Terrestrial Organic Matter in the Carbon Cycle of the Arctic Ocean(2008) Belicka, Laura Lee; Harvey, H. Rodger; Marine-Estuarine-Environmental Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)The organic carbon cycle in the Arctic Ocean is complicated by the delivery and redistribution of terrigenous material through rivers, sea-ice, and erosion. This dissertation combines an isotopic and molecular biomarker approach to assess the role that terrestrial organic carbon plays in the Arctic organic carbon cycle, with a focus on a comparison of geochemical proxies for the quantification of organic matter, an analysis of the sources and transformation of organic carbon to particulate organic matter (POM) and sediments, and an experimental investigation on the kinetics of recycling. Estimates for preserved terrestrial organic components varied considerably for identical sediment samples, suggesting that proxies account for different sources of terrestrial material (i.e., soil versus vascular plants). In spite of the variability, an estimated 12-43% of the organic carbon preserved in surface sediments was terrestrial in origin. This contrasted sharply with surface and halocline POM, in which marine inputs dominated despite spatial variability. With depth, POC composition reflected the increasing significance of inputs from secondary production and microbial degradation, as well as continental material. Acid-volatile sulfide (AVS) and redox-sensitive elements coupled with δ13C and lipid biomarkers demonstrated a transition from intense metabolism of labile marine organic matter in shelf sediments to slower sedimentary metabolism from occasional delivery of labile organic matter in the basin. Experimental determinations of the kinetics of microbial recycling revealed striking contrasts in marine and terrestrial organic carbon lability. Marine organic matter was recycled on very short timescales compared to terrestrial organic matter, corresponding to results of sedimentary and particle analyses. A simplified box model of organic carbon cycling in the Chukchi/Alaskan Beaufort Sea region reveals that 0.9 Mt and 0.7 Mt of marine and terrestrial organic matter, respectively, are buried in shelf sediments, while an additional 0.2 Mt marine and 0.1 Mt of terrestrial organic carbon are buried in basin sediments annually, confirming that land-derived organic matter plays a large role in carbon dynamics in Arctic systems, even on non-river dominated margins.