Undergraduate Research Day 2020
Permanent URI for this collectionhttp://hdl.handle.net/1903/20158
With students involved in so many research opportunities, Undergraduate Research Day provides the perfect opportunity for them to share their work with the campus community. Held each April, Undergraduate Research Day showcases current research, scholarship, and artistic endeavors.
Browse
Search Results
Item MRI Processing Pipeline Variability and Infant Brain Morphometry Associations to 4-Month Infant Temperament(2020) Foster, Kayla; Filippi, Courtney; Margolis, Emma; Ravi, Sanjana; Bracy, Maya; Pine, Daniel; Fox, Nathan; Fox, Nathan; Filippi, CourtneyNegative reactive temperament, an infant temperament characterized by fear of novelty, is associated with adolescent amygdala volume (Filippi et al, 2020) and adult prefrontal cortex (PFC) thickness (Schwartz et al, 2010). However, it remains unknown whether these differences in brain morphometry emerge in infancy. Further, evaluating this possibility is a challenge because few pipelines are optimized for processing infant magnetic resonance imaging (MRI) data. Thus, evaluation of available infant MRI processing pipelines is necessary prior to examining associations between negative reactivity and brain morphometry. This study examines (1) which MRI pipeline performs best for 4-month-old infant MRI data and (2) associations between temperament and brain morphometry. Behavioral reactivity was assessed by presenting novel stimuli to infants. High-resolution structural MRI data was acquired a few weeks later. MRI data were processed using the iBEAT (Dai et al, 2013), dHCP (Makropoulos et al, 2018), and CIVET (Ad-Dab’bagh et al., 2006) pipelines to obtain estimates of amygdala and PFC volume. The quality of segmentations of the three pipelines was then assessed. The processing pipelines showed differences in terms of quality of gray/white segmentation and percentage of processing failures. Overall, iBEAT performed the best with the highest percent of useable data. Using the iBEAT output, we examined the associations between infant brain morphometry and reactivity. Results indicated no significant association between amygdala or PFC volume and reactivity.Item Investigation of 1P-LSD as a Novel Drug Therapy for Autism Spectrum Disorders(2020) Foster, Kayla; Hansen, Abigail; Lee, Matthew; Mohammed, Alan; Morrell, Matthew; Nguyen, Thach-Vu; Olson, Caroline; Pascale, Lucas; Sunny, NishanthAutism spectrum disorders (ASD), defined by repetitive behaviors or impaired social communication, is a prevalent yet relatively misunderstood set of conditions. ASD encompasses a series of neurodevelopmental disorders that have various physiological manifestations (Goines & Ashwood, 2013). Due to the heterogeneity of ASD, the true mechanisms leading to the development of ASD and its symptoms remain unclear and require more research (Rossignol & Frye, 2012; Watts, 2008). The purpose of this project is to test whether or not 1P-LSD, an analogue of LSD (lysergic acid diethylamide), has the potential to treat symptoms of ASD, specifically the hyperexcitation of N-methyl-D-aspartate (NMDA) receptors in the brain which causes the neuronal excitotoxicity highly implicated in the pathology of ASD. We will determine the two highest doses of 1P-LSD which do not result in any hallucinogenic side effects in Phase 1 of this protocol and utilize these doses towards treatment of symptoms associated with ASD in Phase 2 of this protocol. We will monitor NMDA receptor activity, which is usually impaired in ASD, following microdosing of 1P-LSD. For these experiments, we will be using an autistic mouse model (Slc6a4) compared to normal mice (C57BL/6J). The efficacy of the treatment model will be assessed by measuring the levels of a subunit of the NMDA receptor, the NR2B subunit, using western blotting and immunohistochemistry, and by measuring the levels of glutamate using gas chromatography-mass spectrometry (GC-MS).