Epidemiology & Biostatistics Research Works
Permanent URI for this collectionhttp://hdl.handle.net/1903/7128
Browse
3 results
Search Results
Item Google Street View Derived Built Environment Indicators and Associations with State-Level Obesity, Physical Activity, and Chronic Disease Mortality in the United States(MDPI, 2020-05-22) Phan, Lynn; Yu, Weijun; Keralis, Jessica M.; Mukhija, Krishay; Dwivedi, Pallavi; Brunisholz, Kimberly D.; Javanmardi, Mehran; Tasdizen, Tolga; Nguyen, Quynh C.Previous studies have demonstrated that there is a high possibility that the presence of certain built environment characteristics can influence health outcomes, especially those related to obesity and physical activity. We examined the associations between select neighborhood built environment indicators (crosswalks, non-single family home buildings, single-lane roads, and visible wires), and health outcomes, including obesity, diabetes, cardiovascular disease, and premature mortality, at the state level. We utilized 31,247,167 images collected from Google Street View to create indicators for neighborhood built environment characteristics using deep learning techniques. Adjusted linear regression models were used to estimate the associations between aggregated built environment indicators and state-level health outcomes. Our results indicated that the presence of a crosswalk was associated with reductions in obesity and premature mortality. Visible wires were associated with increased obesity, decreased physical activity, and increases in premature mortality, diabetes mortality, and cardiovascular mortality (however, these results were not significant). Non-single family homes were associated with decreased diabetes and premature mortality, as well as increased physical activity and park and recreational access. Single-lane roads were associated with increased obesity and decreased park access. The findings of our study demonstrated that built environment features may be associated with a variety of adverse health outcomes.Item Social Network Analysis on the Mobility of Three Vulnerable Population Subgroups: Domestic Workers, Flight Crews, and Sailors during the COVID-19 Pandemic in Hong Kong(MDPI, 2022-06-21) Yu, Weijun; Alipio, Cheryll; Wan, Jia'an; Mane, Heran; Nguyen, Quynh C.Background: Domestic workers, flight crews, and sailors are three vulnerable population subgroups who were required to travel due to occupational demand in Hong Kong during the COVID-19 pandemic. Objective: The aim of this study was to explore the social networks among three vulnerable population subgroups and capture temporal changes in their probability of being exposed to SARS-CoV-2 via mobility. Methods: We included 652 COVID-19 cases and utilized Exponential Random Graph Models to build six social networks: one for the cross-sectional cohort, and five for the temporal wave cohorts, respectively. Vertices were the three vulnerable population subgroups. Edges were shared scenarios where vertices were exposed to SARS-CoV-2. Results: The probability of being exposed to a COVID-19 case in Hong Kong among the three vulnerable population subgroups increased from 3.38% in early 2020 to 5.78% in early 2022. While domestic workers were less mobile intercontinentally compared to flight crews and sailors, domestic workers were 1.81-times in general more likely to be exposed to SARS-CoV-2. Conclusions: Vulnerable populations with similar ages and occupations, especially younger domestic workers and flight crew members, were more likely to be exposed to SARS-CoV-2. Social network analysis can be used to provide critical information on the health risks of infectious diseases to vulnerable populations.Item Examination of the Public’s Reaction on Twitter to the Over-Turning of Roe v Wade and Abortion Bans(MDPI, 2022-11-29) Mane, Heran; Yue, Xiaohe; Yu, Weijun; Doig, Amara Channell; Wei, Hanxue; Delcid, Nataly; Harris, Afia-Grace; Nguyen, Thu T.; Nguyen, Quynh C.The overturning of Roe v Wade reinvigorated the national debate on abortion. We used Twitter data to examine temporal, geographical and sentiment patterns in the public’s reaction. Using the Twitter API for Academic Research, a random sample of publicly available tweets was collected from 1 May–15 July in 2021 and 2022. Tweets were filtered based on keywords relating to Roe v Wade and abortion (227,161 tweets in 2021 and 504,803 tweets in 2022). These tweets were tagged for sentiment, tracked by state, and indexed over time. Time plots reveal low levels of conversations on these topics until the leaked Supreme Court opinion in early May 2022. Unlike pro-choice tweets which declined, pro-life conversations continued with renewed interest throughout May and increased again following the official overturning of Roe v Wade. Conversations were less prevalent in some these states had abortion trigger laws (Wyoming, North Dakota, South Dakota, Texas, Louisiana, and Mississippi). Collapsing across topic categories, 2022 tweets were more negative and less neutral and positive compared to 2021 tweets. In network analysis, tweets mentioning woman/women, supreme court, and abortion spread faster and reached to more Twitter users than those mentioning Roe Wade and Scotus. Twitter data can provide real-time insights into the experiences and perceptions of people across the United States, which can be used to inform healthcare policies and decision-making.