UMD Theses and Dissertations

Permanent URI for this collectionhttp://hdl.handle.net/1903/3

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a given thesis/dissertation in DRUM.

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    Predicting the magnetic field of the three-meter spherical Couette experiment
    (2021) Burnett, Sarah; Lathrop, Daniel P; Ide, Kayo; Applied Mathematics and Scientific Computation; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    The magnetohydrodynamics of Earth have been explored at the University of Maryland and the Institute of Geosciences in Grenoble, France through experiments, numerical models, and machine learning. The interaction between Earth's magnetic fields and its outer core is emulated in a laboratory using the three-meter spherical Couette device filled with liquid sodium driven by two independently rotating concentric shells and an external dipole magnetic field. Recently, the experiment has undergone modifications to increase the helical flows in the poloidal direction to bring it closer to the convection-driven geodynamo flows of Earth. The experiment has 31 surface Hall probes measuring sparsely the external magnetic field. The numerical model, XSHELLS, solves the coupled Navier-Stokes and induction equations numerically to give a full picture of the internal velocity and magnetic field, however, it cannot resolve all the turbulence. In this thesis we aim to improve the prediction of magnetic fields in the experiment by performing studies both on experimental data and simulation data. First, we analyze the simulation data to assess the viability of using the measured external magnetic field to represent the internal dynamics of the velocity and magnetic field. These simulations also elucidate the internal behavior of the experiment for the first time. Next, we compare the experimental magnetic field measurements with the extrapolated surface magnetic field measurements in simulations using principal component analysis by matching all parameters but the level of turbulence. Our goal is to see if (i) the eigenvectors corresponding to the largest eigenvalues are comparable and (ii) how then the surface measurements of the simulation couple with the internal measurements, which are not accessible in the experiment. Next, we perform several machine learning techniques to see the feasibility of using the current probe setup to predict the magnetic fields in time. In the second to last chapter, we assess the potential locations for magnetic field measurements. These studies provide insight on the measurements required to predict Earth's magnetic field.
  • Thumbnail Image
    Item
    Turbulent Shear Flow in a Rapidly Rotating Spherical Annulus
    (2010) Zimmerman, Daniel; Lathrop, Daniel P; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    This dissertation presents experimental measurements of torque, wall shear stress, pressure, and velocity in the boundary-driven turbulent flow of water between concentric, independently rotating spheres, commonly known as spherical Couette flow. The spheres' radius ratio is 0.35, geometrically similar to that of Earth's core. The measurements are performed at unprecedented Reynolds number for this geometry, as high as fifty-six million. The role of rapid overall rotation on the turbulence is investigated. A number of different turbulent flow states are possible, selected by the Rossby number, a dimensionless measure of the differential rotation. In certain ranges of the Rossby number near state borders, bistable co-existence of states is possible. In these ranges the flow undergoes intermittent transitions between neighboring states. At fixed Rossby number, the flow properties vary with Reynolds number in a way similar to that of other turbulent flows. At most parameters investigated, the large scales of the turbulent flow are characterized by system-wide spatial and temporal correlations that co-exist with intense broadband velocity fluctuations. Some of these wave-like motions are identifiable as inertial modes. All waves are consistent with slowly drifting large scale patterns of vorticity, which include Rossby waves and inertial modes as a subset. The observed waves are generally very energetic, and imply significant inhomogeneity in the turbulent flow. Increasing rapidity of rotation as the Ekman number is lowered intensifies those waves identified as inertial modes with respect to other velocity fluctuations. The turbulent scaling of the torque on inner sphere is a focus of this dissertation. The Rossby-number dependence of the torque is complicated. We normalize the torque at a given Reynolds number in the rotating states by that when the outer sphere is stationary. We find that this normalized quantity can be considered a Rossby-dependent friction factor that expresses the effect of the self-organized flow geometry on the turbulent drag. We predict that this Rossby-dependence will change considerably in different physical geometries, but should be an important quantity in expressing the parameter dependence of other rapidly rotating shear flows.
  • Thumbnail Image
    Item
    Liquid sodium model of Earth's outer core
    (2004-08-27) Shew, Woodrow Lee; Lathrop, Daniel P.; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Convective motions in Earth's outer core are responsible for the generation of the geomagnetic field. We present liquid sodium convection experiments in a spherical vessel, designed to model the convective state of Earth's outer core. Heat transfer, zonal fluid velocities, and properties of temperature fluctuations were measured for different rotation rates and temperature drops across the convecting sodium. The small scale fluid motion was highly turbulent, despite the fact that less than half of the total heat transfer was due to convection. Retrograde zonal velocities were measured at speeds up to 0.02 times the tangential speed of the outer wall of the vessel. Power spectra of temperature fluctuations indicate a well defined knee characterizing the convective energy input. This frequency is proportional to the ballistic velocity estimate. In the context of Earth's outer core, our observations imply a thermal Rayleigh number Ra=10^22, a convective velocity near 10^-5 m/s, and length and time scales of convective motions of 100 m and 2 days.