UMD Theses and Dissertations

Permanent URI for this collectionhttp://hdl.handle.net/1903/3

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a given thesis/dissertation in DRUM.

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    APPLICATIONS OF THE OZONE MONITORING INSTRUMENT IN OBSERVING VOLCANIC SULFUR DIOXIDE PLUMES AND SULFATE DEPOSITION
    (2021) Fedkin, Niko Markovich; Dickerson, Russell R; Atmospheric and Oceanic Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Sulfur dioxide (SO2), a gas emitted by both volcanoes and anthropogenic activity, is a major pollutant and a precursor to sulfate aerosols. Sulfates can be deposited back to the ground where they have adverse impact on the environment or reside in the stratosphere as aerosols and affect radiative forcing. I investigated two components that stem from SO2: the deposition of sulfate, and the remote sensing of the SO2 layer height, important for aviation safety and chemical modeling. In the first study, I used column SO2 data from the Ozone Monitoring Instrument (OMI), and sulfate wet deposition data from the National Atmospheric Deposition Program to investigate the temporal and spatial relationship between trends in SO2 emissions and the downward sulfate wet deposition over the northeastern U.S. from 2005 to 2015. The results showed that emission reductions are reflected in deposition reductions within this same region. Emission reductions along the Ohio River Valley led to decreases in sulfate deposition not only in eastern OH and western PA, but also further downwind at sites in Delaware and Maryland. The findings suggested that emissions and wet deposition are linked through not only the location of sources relative to the observing sites, but also photochemistry and weather patterns characteristic to the region in winter and summer. The second part of this dissertation focuses on SO2 layer height retrievals and their applications. To this end I applied the Full Physics Inverse Learning Machine (FP-ILM) algorithm to OMI radiances in the spectral range of 310-330 nm. This approach utilized radiative transfer calculations to generate a large dataset of synthetic radiance spectra for a wide range of geophysical parameters. The spectral information was then used to train a neural network to predict the SO2 height. The main advantage of the algorithm is its speed, retrieving plume height in less than 10 min for an entire OMI orbit. I also compared the SO2 height retrievals to other data sources and explored some potential applications, in particular their use in volcanic SO2 plume forecasts and estimating the total mass emitted from volcanic eruptions.
  • Thumbnail Image
    Item
    Satellite Remote Sensing of Smoke Particle Optical Properties, Their Evolution and Controlling Factors
    (2021) Junghenn, Katherine Teresa; Li, Zhanqing; Kahn, Ralph A.; Atmospheric and Oceanic Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    The optical and chemical properties of biomass burning (BB) smoke particles greatly affect the impact wildfires have on climate and air quality. Previous work has demonstrated some links between smoke properties and factors such as fuel type and meteorology. However, the factors controlling BB particle speciation at emission are not adequately understood, nor are those driving particle aging during atmospheric transport. As such, modeling wildfire smoke impacts on climate and air quality remains challenging. The potential to provide robust, statistical characterizations of BB particles based on ecosystem and ambient conditions with remote sensing data is investigated here. Space-based Multi-angle Imaging Spectrometer (MISR) observations, combined with the MISR Research Aerosol (RA) algorithm and the MISR Interactive Explorer (MINX) tool, are used to retrieve smoke plume aerosol optical depth (AOD), and to provide constraints on plume vertical extent, smoke age, and particle size, shape, light-absorption, and absorption spectral dependence. These capabilities are evaluated using near-coincident in situ data from two aircraft field campaigns. Results indicate that the satellite retrievals successfully map particle-type distributions, and that the observed trends in retrieved particle size and light-absorption can be reliably attributed to aging processes such as gravitational settling, oxidation, secondary particle formation, and condensational growth. The remote-sensing methods are then applied to numerous wildfire plumes in Canada and Alaska that are not constrained by field observations. For these plumes, satellite measurements of fire radiative power and land cover characteristics are also collected, as well as short-term meteorological data and drought index. We find statistically significant differences in the retrieved smoke properties based on land cover type, with fires in forests producing the tallest and thickest plumes containing the largest, brightest particles, and fires in savannas and grasslands exhibiting the opposite. Additionally, the inferred dominant aging mechanisms and the timescales over which they occur vary between land types. This work demonstrates the potential of remote sensing to constrain BB particle properties and the mechanisms governing their evolution, over entire ecosystems. It also begins to realize this potential, as a means of improving regional and global climate and air quality modeling in a rapidly changing world.
  • Thumbnail Image
    Item
    MIXING CHARACTERISTICS OF SINGLE-PLUME AND MULTI-PLUME HIGH PRESSURE INJECTION TESTS
    (2007-06-13) Knowles, Philip; Kiger, Kenneth T; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    The purpose of this thesis is to examine effects of multiple plumes in a Pressurized Water Reactor downcomer under scaled Pressurized Thermal Shock conditions, then assess the flow patterns and mixing compared to a single plume. Most computational and experimental studies have been performed using only single plumes; the findings of multiple plume experiments indicate that plume interaction significantly changes the flow pattern in the downcomer. A globally-induced recirculation region was created by the collective interaction of the multiple plumes in the UMD experiments, which does not occur for a single plume under similar conditions. From the evolving concentration field measurements and entrainment theory, it's argued that two merged plumes experience lower entrainment rates than a single plume. This implies the possibility of a higher thermal stress on the downcomer wall than would be inferred from single plume tests. Flow visualization was employed to examine the differences in plume behavior.