UMD Theses and Dissertations

Permanent URI for this collectionhttp://hdl.handle.net/1903/3

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a given thesis/dissertation in DRUM.

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    Near-infrared Instrumentation For Rapid-response Astronomy
    (2016) Capone, John Isaac; Veilleux, Sylvain; Kutyrev, Alexander S; Astronomy; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Ɣ-ray bursts (GRBs) are the Universe's most luminous transient events. Since the discovery of GRBs was announced in 1973, efforts have been ongoing to obtain data over a broader range of the electromagnetic spectrum at the earliest possible times following the initial detection. The discovery of the theorized ``afterglow'' emission in radio through X-ray bands in the late 1990s confirmed the cosmological nature of these events. At present, GRB afterglows are among the best probes of the early Universe (z ≳ 9). In addition to informing theories about GRBs themselves, observations of afterglows probe the circum-burst medium (CBM), properties of the host galaxies and the progress of cosmic reionization. To explore the early-time variability of afterglows, I have developed a generalized analysis framework which models near-infrared (NIR), optical, ultra-violet (UV) and X-ray light curves without assuming an underlying model. These fits are then used to construct the spectral energy distribution (SED) of afterglows at arbitrary times within the observed window. Physical models are then used to explore the evolution of the SED parameter space with time. I demonstrate that this framework produces evidence of the photodestruction of dust in the CBM of GRB 120119A, similar to the findings from a previous study of this afterglow. The framework is additionally applied to the afterglows of GRB 140419A and GRB 080607. In these cases the evolution of the SEDs appears consistent with the standard fireball model. Having introduced the scientific motivations for early-time observations, I introduce the Rapid Infrared Imager-Spectrometer (RIMAS). Once commissioned on the 4.3 meter Discovery Channel Telescope (DCT), RIMAS will be used to study the afterglows of GRBs through photometric and spectroscopic observations beginning within minutes of the initial burst. The instrument will operate in the NIR, from 0.97 μm to 2.37 μm, permitting the detection of very high redshift (z ≳ 7) afterglows which are attenuated at shorter wavelengths by Lyman-ɑ absorption in the intergalactic medium (IGM). A majority of my graduate work has been spent designing and aligning RIMAS's cryogenic (~80 K) optical systems. Design efforts have included an original camera used to image the field surrounding spectroscopic slits, tolerancing and optimizing all of the instrument's optics, thermal modeling of optomechanical systems, and modeling the diffraction efficiencies for some of the dispersive elements. To align the cryogenic optics, I developed a procedure that was successfully used for a majority of the instrument's sub-assemblies. My work on this cryogenic instrument has necessitated experimental and computational projects to design and validate designs of several subsystems. Two of these projects describe simple and effective measurements of optomechanical components in vacuum and at cryogenic temperatures using an 8-bit CCD camera. Models of heat transfer via electrical harnesses used to provide current to motors located within the cryostat are also presented.
  • Thumbnail Image
    Item
    CHARACTERIZATION OF RADIATION DAMAGE TO A NOVEL PHOTONIC CRYSTAL SENSOR
    (2015) Grdanovska, Slavica; Briber, Robert M.; Koeth, Timothy W.; Nuclear Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    New methods of nuclear fuel and cladding characterization must be developed and implemented to enhance the safety and reliability of nuclear power plants. One class of such advanced methods is aimed at the characterization of fuel performance by performing minimally intrusive in-core, real time measurements on nuclear fuel on the nanometer scale. Nuclear power plants depend on instrumentation and control systems for monitoring, control and protection. Traditionally, methods for fuel characterization under irradiation are performed using a “cook and look” method. These methods are very expensive and labor-intensive since they require removal, inspection and return of irradiated samples for each measurement. Such fuel cladding inspection methods investigate oxide layer thickness, wear, dimensional changes, ovality, nuclear fuel growth and nuclear fuel defect identification. These methods are also not suitable for all commercial nuclear power applications as they are not always available to the operator when needed. Additionally, such techniques often provide limited data and may exacerbate the phenomena being investigated. This thesis investigates a novel, nanostructured sensor based on a photonic crystal design that is implemented in a nuclear reactor environment. The aim of this work is to produce an in-situ radiation-tolerant sensor capable of measuring the deformation of a nuclear material during nuclear reactor operations. The sensor was fabricated on the surface of nuclear reactor materials (specifically, steel and zirconium based alloys). Charged-particle and mixed-field irradiations were both performed on a newly-developed “pelletron” beamline at Idaho State University's Research and Innovation in Science and Engineering (RISE) complex and at the University of Maryland's 250 kW Training Reactor (MUTR). The sensors were irradiated to 6 different fluences (ranging from 1 to 100 dpa), followed by intensive characterization using focused ion beam (FIB), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) to investigate the physical deformation and microstructural changes between different fluence levels, to provide high-resolution information regarding the material performance. Computer modeling (SRIM/TRIM) was employed to simulate damage to the sensor as well as to provide significant information concerning the penetration depth of the ions into the material.
  • Thumbnail Image
    Item
    PROFILE- AND INSTRUMENTATION- DRIVEN METHODS FOR EMBEDDED SIGNAL PROCESSING
    (2015) Chukhman, Ilya; Bhattacharyya, Shuvra; Petrov, Peter; Electrical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Modern embedded systems for digital signal processing (DSP) run increasingly sophisticated applications that require expansive performance resources, while simultaneously requiring better power utilization to prolong battery-life. Achieving such conflicting objectives requires innovative software/hardware design space exploration spanning a wide-array of techniques and technologies that offer trade-offs among performance, cost, power utilization, and overall system design complexity. To save on non-recurring engineering (NRE) costs and in order to meet shorter time-to-market requirements, designers are increasingly using an iterative design cycle and adopting model-based computer-aided design (CAD) tools to facilitate analysis, debugging, profiling, and design optimization. In this dissertation, we present several profile- and instrumentation-based techniques that facilitate design and maintenance of embedded signal processing systems: 1. We propose and develop a novel, translation lookaside buffer (TLB) preloading technique. This technique, called context-aware TLB preloading (CTP), uses a synergistic relationship between the (1) compiler for application specific analysis of a task's context, and (2) operating system (OS), for run-time introspection of the context and efficient identification of TLB entries for current and future usage. CTP works by (1) identifying application hotspots using compiler-enabled (or manual) profiling, and (2) exploiting well-understood memory access patterns, typical in signal processing applications, to preload the TLB at context switch time. The benefits of CTP in eliminating inter-task TLB interference and preemptively allocating TLB entries during context-switch are demonstrated through extensive experimental results with signal processing kernels. 2. We develop an instrumentation-driven approach to facilitate the conversion of legacy systems, not designed as dataflow-based applications, to dataflow semantics by automatically identifying the behavior of the core actors as instances of well-known dataflow models. This enables the application of powerful dataflow-based analysis and optimization methods to systems to which these methods have previously been unavailable. We introduce a generic method for instrumenting dataflow graphs that can be used to profile and analyze actors, and we use this instrumentation facility to instrument legacy designs being converted and then automatically detect the dataflow models of the core functions. We also present an iterative actor partitioning process that can be used to partition complex actors into simpler entities that are more prone to analysis. We demonstrate the utility of our proposed new instrumentation-driven dataflow approach with several DSP-based case studies. 3. We extend the instrumentation technique discussed in (2) to introduce a novel tool for model-based design validation called dataflow validation framework (DVF). DVF addresses the problem of ensuring consistency between (1) dataflow properties that are declared or otherwise assumed as part of dataflow-based application models, and (2) the dataflow behavior that is exhibited by implementations that are derived from the models. The ability of DVF to identify disparities between an application's formal dataflow representation and its implementation is demonstrated through several signal processing application development case studies.