UMD Theses and Dissertations
Permanent URI for this collectionhttp://hdl.handle.net/1903/3
New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a given thesis/dissertation in DRUM.
More information is available at Theses and Dissertations at University of Maryland Libraries.
Browse
3 results
Search Results
Item THE EFFECT OF SUMMER STORM EVENTS AS A DISTURBANCE ON THE MOVEMENT BEHAVIORS OF BLACK SEA BASS IN THE SOUTHERN MID-ATLANTIC BIGHT(2019) Wiernicki, Caroline Jane; Secor, David H; Marine-Estuarine-Environmental Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Storm events are a key disturbance in the Middle Atlantic Bight (MAB), driving thermal, hydrodynamic, and acoustic perturbations on demersal fish communities. Black sea bass are a model MAB species as their sedentary behavior exposes them to storm disturbances. I coupled biotelemetry with an oceanographic model, monitoring black sea bass movement behaviors during the summer-fall of 2016-2018. Storm-driven changes in bottom temperature (associated with rapid destratification) had the greatest effects on fish movement and evacuation rates, while the cumulative effects of consecutive storms had little to no observed effect. Storms also generate substantial noise, but the hearing frequencies of black sea bass are currently unknown. I conducted a quantitative literature analysis on fish hearing based on swim bladder elaboration, successfully classifying detected sound frequency ranges among fishes, including black sea bass. Climate change will likely alter the intensity of MAB storms, prioritizing research on their impacts to fish communities.Item QUANTIFYING FIRE-INDUCED SURFACE FORCING IN SIBERIAN LARCH FORESTS(2017) Chen, Dong; Loboda, Tatiana V.; Geography; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Wildfires are a common disturbance agent in the global boreal forests. In the North American boreal forests, they have been shown to exert a strong cooling effect through post-fire changes in surface albedo that has a larger overall impact on the climate system than associated carbon emissions. However, these findings are not directly applicable to the Siberian larch forests, a major component of the boreal biome where species composition are dominated by a deciduous needleleaf species and fire regimes are characterized by the common occurrence of both stand-replacing and less-severe surface fires. This dissertation quantifies the post-fire surface forcing imposed by both fire types in these forests over 14 years since fire, and determines that both surface and stand replacing fires impose cooling effects through increased albedo during snow season. The magnitude of the cooling effect from stand replacing fires is much larger than that of surface fires, and this is likely a consequence of higher levels of canopy damage after stand-replacing fires. At its peak (~ year 11 after fire occurrence), the cooling magnitude is similar to that of the North American boreal fires. Strong cooling effect and the wide-spread occurrence of stand-replacing fires lead to a net negative surface forcing over the entire region between 2002 and 2013. Based on the extended albedo trajectory which was made possible by developing a 24-year stand age map, it was shown that the cooling effect of stand-replacing fires lasts for more than 26 years. The overall cooling effect of surface fires is of lower magnitude and is likely indicative of damages not only to the canopies but also the shrubs in the understory. Based on the identified difference in their influences on post-fire energy budget, this dissertation also identified a remote sensing method to separate surface fires from stand-replacing fires in Siberian larch forests with an 88% accuracy. The insights gained from this dissertation will allow for accurate representation of wildfires in the regional or global climate models in the future.Item Impacts of a changing fire frequency on soil carbon stocks in interior Alaskan boreal forests(2014) Hoy, Elizabeth Embury; Kasischke, Eric S; Geography; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Increasing temperatures and drier conditions, related to climate change, have resulted in changes to the fire regime in interior Alaskan boreal forests, including increases in burned area and fire frequency. These fire regime changes alter carbon storage and emissions, especially in the thick organic soils of black spruce (Picea mariana) forests. While there are ongoing studies of the size and severity of fire using ground- and remote-based studies in mature black spruce forests, a better understanding of fire regime changes to immature black spruce forests is needed. The goal of this dissertation research was to assess impacts of changing fire frequency on soil organic layer (SOL) carbon consumption during wildland fires in recovering Alaskan black spruce forests using a combination of geospatial and remote sensing analyses, field-based research, and modeling. The research objectives were to 1) quantify burning in recovering vegetated areas; 2) analyze factors associated with variations in fire frequency; 3) quantify how fire frequency affects depth of burning, residual SOL depth, and carbon loss in the SOL of black spruce forests; and 4) analyze how fire frequency impacts carbon consumption in these forests. Results showed that considerable burning in the region occurs in stands not yet fully recovered from earlier fire events (~20% of burned areas are in immature stands). Additionally, burning in recovering black spruce forests (~40 yrs old) resulted in SOL depth of burn similar to that in mature forests which have burned. Incorporating these results into a modeling framework (through adding an immature black spruce fuel type and associated ground-layer carbon consumption values) resulted in higher ground-layer carbon consumption (and thus total carbon consumed) for areas that burned in 2004 and 2005 than that of a previous version of the model. This research indicated that the dominant controls on fire behavior in this system were fuel type and amount, not fuel condition, and that changes in vegetation associated with more frequent fire (shift to deciduous and shrub vegetation which does not traditionally burn as readily) may represent a long-term negative feedback on burned area. These new results provide insight into the fire-climate-vegetation dynamics within the region and could be used to both inform and validate modeling efforts to better estimate soil carbon pools and emissions as climate continues to change.