UMD Theses and Dissertations
Permanent URI for this collectionhttp://hdl.handle.net/1903/3
New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a given thesis/dissertation in DRUM.
More information is available at Theses and Dissertations at University of Maryland Libraries.
Browse
2 results
Search Results
Item Stochastic processes on graphs: learning representations and applications(2019) Bohannon, Addison Woodford; Balan, Radu V; Applied Mathematics and Scientific Computation; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)In this work, we are motivated by discriminating multivariate time-series with an underlying graph topology. Graph signal processing has developed various tools for the analysis of scalar signals on graphs. Here, we extend the existing techniques to design filters for multivariate time-series that have non-trivial spatiotemporal graph topologies. We show that such a filtering approach can discriminate signals that cannot otherwise be discriminated by competing approaches. Then, we consider how to identify spatiotemporal graph topology from signal observations. Specifically, we consider a generative model that yields a bilinear inverse problem with an observation-dependent left multiplication. We propose two algorithms for solving the inverse problem and provide probabilistic guarantees on recovery. We apply the technique to identify spatiotemporal graph components in electroencephalogram (EEG) recordings. The identified components are shown to discriminate between various cognitive task conditions in the data.Item FACE RECOGNITION AND VERIFICATION IN UNCONSTRAINED ENVIRIONMENTS(2012) Guo, Huimin; Davis, Larry; Computer Science; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Face recognition has been a long standing problem in computer vision. General face recognition is challenging because of large appearance variability due to factors including pose, ambient lighting, expression, size of the face, age, and distance from the camera, etc. There are very accurate techniques to perform face recognition in controlled environments, especially when large numbers of samples are available for each face (individual). However, face identification under uncontrolled( unconstrained) environments or with limited training data is still an unsolved problem. There are two face recognition tasks: face identification (who is who in a probe face set, given a gallery face set) and face verification (same or not, given two faces). In this work, we study both face identification and verification in unconstrained environments. Firstly, we propose a face verification framework that combines Partial Least Squares (PLS) and the One-Shot similarity model[1]. The idea is to describe a face with a large feature set combining shape, texture and color information. PLS regression is applied to perform multi-channel feature weighting on this large feature set. Finally the PLS regression is used to compute the similarity score of an image pair by One-Shot learning (using a fixed negative set). Secondly, we study face identification with image sets, where the gallery and probe are sets of face images of an individual. We model a face set by its covariance matrix (COV) which is a natural 2nd-order statistic of a sample set.By exploring an efficient metric for the SPD matrices, i.e., Log-Euclidean Distance (LED), we derive a kernel function that explicitly maps the covariance matrix from the Riemannian manifold to Euclidean space. Then, discriminative learning is performed on the COV manifold: the learning aims to maximize the between-class COV distance and minimize the within-class COV distance. Sparse representation and dictionary learning have been widely used in face recognition, especially when large numbers of samples are available for each face (individual). Sparse coding is promising since it provides a more stable and discriminative face representation. In the last part of our work, we explore sparse coding and dictionary learning for face verification application. More specifically, in one approach, we apply sparse representations to face verification in two ways via a fix reference set as dictionary. In the other approach, we propose a dictionary learning framework with explicit pairwise constraints, which unifies the discriminative dictionary learning for pair matching (face verification) and classification (face recognition) problems.