UMD Theses and Dissertations

Permanent URI for this collectionhttp://hdl.handle.net/1903/3

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a given thesis/dissertation in DRUM.

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Metabolic Acid Transport in Human Retinal Pigment Epithelium
    (2010) Adijanto, Jeffrey; Wang, Nam S; Miller, Sheldon S; Chemical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    At the back of our eyes, photoreceptors capture light and convert it into electrical signals that we perceive in our brain as vision. Photoreceptor function is energy expensive, even more so than many other processes in the body. Furthermore, photoreceptor metabolism increases in the dark and releases more metabolic by-products (CO2, lactic acid, and water) into the photoreceptor extracellular space (SRS). The retinal pigment epithelium (RPE) maintains photoreceptor health by transporting these metabolic acids from the SRS to the choroidal blood supply. By using native and cultured fetal human RPE, we show that the apical membrane is significantly more permeable to CO2 than the basolateral membrane. This feature traps CO2 in the cell and drives carbonic anhydrase (CA)-mediated hydration of CO2 into HCO3, which is subsequently transported out of the basolateral membrane by a Na-linked HCO3 co-transporter (NBC). This process increases net steady-state fluid absorption, thus maintaining retinal adhesion to the RPE. Oxidative metabolism generates significantly more ATP than glycolysis, but photoreceptors derive 50% of their total ATP consumed from glycolysis due to the low oxygen level at the photoreceptor inner segment. Furthermore, lactic acid production and release into the SRS almost doubles in the dark. We show that the RPE transports lactic acid from the SRS via a proton-linked monocarboxylate transporter (MCT1), and this process activates pHi-regulatory mechanisms at the RPE apical membrane: Na/H exchanger (NHE) and Na-linked HCO3 transporters (NBC1 & NBC3). These mechanisms also facilitate MCT1-mediated lactic acid transport by preventing buildup of a proton-gradient across the RPE apical membrane. We show that an increase in SRS CO2 or lactic acid level causes RPE cell swelling. The RPE alleviates swell-induced osmotic stress by activating apical membrane K-channel (Kir 7.1) and basolateral membrane Cl -channel (ClC-2), which drives KCl (and fluid) out of the cell to decrease cell volume. In this study, we identified the cellular mechanisms in RPE that prevent acidosis and fluid accumulation in the SRS caused by increased photoreceptor metabolism in the dark. These homeostatic processes maintain the close anatomical relationship between photoreceptors and RPE, thus protecting photoreceptor health and preserving visual function.
  • Thumbnail Image
    Item
    Acclimation of marine macrophytes (Saccharina latissima and Zostera marina) to water flow
    (2008-05-12) Jordan, Terry Lynn; Koch, Evamaria; Davison, Ian; Marine-Estuarine-Environmental Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    I examined the physiological response of two marine macrophytes, the brown alga Saccharina latissima and the angiosperm Zostera marina, to water flow in nature and in controlled experiments. Limitation of photosynthesis of both species by the availability of dissolved inorganic carbon (DIC) was increased under low current velocities. Physiological acclimation to low water flow occurred via upregulation of DIC uptake mechanisms in both S. latissima and Z. marina. Both species increased their ability to generate CO2 in the boundary layer by increasing external carbonic anhydrase and in Z. marina by also increasing proton extrusion and photosynthetic capacity. Changes in the xanthophyll-cycle in low-flow grown S. latissima increased non-photochemical quenching, thus reducing photodamage when photosynthesis was limited by DIC uptake. Water flow also affected root length in Z. marina but root length and below ground biomass were also significantly affected by sediment type, an indirect effect of water flow.