UMD Theses and Dissertations

Permanent URI for this collectionhttp://hdl.handle.net/1903/3

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a given thesis/dissertation in DRUM.

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    Spatiotemporal Dynamics and Functional Organization of Auditory Cortex Networks
    (2021) Bowen, Zac; Kanold, Patrick O; Losert, Wolfgang; Biophysics (BIPH); Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    The sensory cortices of the brain are highly complex systems that are uniquely adapted to reliably process any encountered sensory stimulus. Sensory stimuli such as sound are encoded in large populations of neurons that exhibit some functional organization in the cortex. For example, the auditory cortex has a characteristic organization of sound frequency by which neuronal responses are organized. However, this organization is a broad approximation of more complex and diverse functional properties of individual neurons. Furthermore, on a finer temporal scale, the moment-to-moment activity dynamics of populations of neurons are incredibly complex. Numerous studies have shown that spatiotemporal cascades of co-active neurons organize as neuronal avalanches possessing certain characteristics such as size, duration, and shape that fit the parameters of a critical system. Nevertheless, it remains that the exact manner in which neuronal populations encode information is still not fully understood. This dissertation makes use of neuroimaging data acquired with 2-photon calcium imaging of the auditory cortex in awake mice to investigate the spatiotemporal and functional organization of active neuronal populations in auditory cortex at a range of temporal and spatial scales. I aimed to gain a deeper understanding into how neuronal population dynamics and the underlying network organization contribute to sound encoding in auditory cortex. I studied input and associative layers of auditory cortex (L4 and L2/3) in a mouse model with normal hearing and another with age-related hearing loss due to loss of proper cochlear function to high-frequency sound. L4 and L2/3 contained populations of neurons with a large diversity in functional properties, though diversity was reduced in the hearing loss model due to paucity of high frequency tuned neurons. Despite the diverse tuning in both, similarly responding neurons tended to be co-localized in cortical space. I found that this result extended to volumetric samples of L2/3 where large populations of neurons contained a functional network architecture indicative of small-world topology. Furthermore, I demonstrated that L4 and L2/3 contain ensembles of co-active neurons indicative of critical dynamics in both the absence and presence of a stimulus. Finally, I developed software that facilitates real-time quantification of neuronal populations during an experiment which opens the door for novel closed-loop experiment design. This dissertation provides several avenues for further investigation into neuronal population coding and dynamics, functional network topology, and provides the groundwork for closed-loop experimental design.
  • Thumbnail Image
    Item
    SENSORY AND PERCEPTUAL CODES IN CORTICAL AUDITORY PROCESSING
    (2017) Cervantes Constantino, Francisco Israel; Simon, Jonathan Z; Neuroscience and Cognitive Science; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    A key aspect of human auditory cognition is establishing efficient and reliable representations about the acoustic environment, especially at the level of auditory cortex. Since the inception of encoding models that relate sound to neural response, three longstanding questions remain open. First, on the apparently insurmountable problem of fundamental changes to cortical responses depending on certain categories of sound (e.g. simple tones versus environmental sound). Second, on how to integrate inner or subjective perceptual experiences into sound encoding models, given that they presuppose existing, direct physical stimulation which is sometimes missed. And third, on how does context and learning fine-tune these encoding rules, as adaptive changes to improve impoverished conditions particularly important for communication sounds. In this series, each question is addressed by analysis of mappings from sound stimuli delivered-to and/or perceived-by a listener, to large-scale cortically-sourced response time series from magnetoencephalography. It is first shown that the divergent, categorical modes of sensory coding may unify by exploring alternative acoustic representations other than the traditional spectrogram, such as temporal transient maps. Encoding models of either of artificial random tones, music, or speech stimulus classes, were substantially matched in their structure when represented from acoustic energy increases –consistent with the existence of a domain-general common baseline processing stage. Separately, the matter of the perceptual experience of sound via cortical responses is addressed via stereotyped rhythmic patterns normally entraining cortical responses with equal periodicity. Here, it is shown that under conditions of perceptual restoration, namely cases where a listener reports hearing a specific sound pattern in the midst of noise nonetheless, one may access such endogenous representations in the form of evoked cortical oscillations at the same rhythmic rate. Finally, with regards to natural speech, it is shown that extensive prior experience over repeated listening of the same sentence materials may facilitate the ability to reconstruct the original stimulus even where noise replaces it, and to also expedite normal cortical processing times in listeners. Overall, the findings demonstrate cases by which sensory and perceptual coding approaches jointly continue to expand the enquiry about listeners’ personal experience of the communication-rich soundscape.
  • Thumbnail Image
    Item
    Hearing VS. Listening: Attention Changes the Neural Representations of Auditory Percepts
    (2008-05-01) xiang, juanjuan; Simon, Jonathan Z.; Electrical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Making sense of acoustic environments is a challenging task. At any moment, the signals from distinct auditory sources arrive in the ear simultaneously, forming an acoustic mixture. The brain must represent distinct auditory objects in this complex scene and prioritize processing of relevant stimuli while maintaining the capability to react quickly to unexpected events. The present studies explore neural representations of temporal modulations and the effects of attention on these representations. Temporal modulation plays a significant role in speech perception and auditory scene analysis. To uncover how temporal modulations are processed and represented is potentially of great importance for our general understanding of the auditory system. Neural representations of compound modulations were investigated by magnetoencephalography (MEG). Interaction components are generated by near rather than distant modulation rhythms, suggesting band-limited modulation filter banks operating in the central stage of the auditory system. Furthermore, the slowest detectable neural oscillation in the auditory cortex corresponds to the perceived oscillation of the auditory percept. Interactions between stimulus-evoked and goal-related neural responses were investigated in simultaneous behavioral-neurophysiological studies, in which we manipulate subjects' attention to different components of an auditory scene. Our experimental results reveal that attention to the target correlates with a sustained increase in the neural target representation, beyond well-known transient effects. The enhancement of power and phase coherence presumably reflects increased local and global synchronizations in the brain. Furthermore, the target's perceptual detectability improves over time (several seconds), correlating strongly with the target representation's neural buildup. The change in cortical representations can be reversed in a short time-scale (several minutes) by various behavioral goals. These aforementioned results demonstrate that the neural representation of the percept is encoded using the feature-driven mechanisms of sensory cortex, but shaped in a sustained manner via attention-driven projections from higher-level areas. This adaptive neural representations occur on multiple time scales (seconds vs. minutes) and multiple spatial scales (local vs. global synchronization). Such multiple resolutions of adaptation may underlie general mechanisms of scene organization in any sensory modality and may contribute to our highly adaptive behaviors.