UMD Theses and Dissertations

Permanent URI for this collectionhttp://hdl.handle.net/1903/3

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a given thesis/dissertation in DRUM.

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 5 of 5
  • Thumbnail Image
    Item
    Experiments with Ultracold Strontium in Compact Grating Magneto-Optical Trap Geometries
    (2022) Sitaram, Ananya; Campbell, Gretchen K; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    In this thesis, we present the construction of a new apparatus for conducting experiments withultracold strontium. The new apparatus is designed with a high-flux atomic source, a custom science chamber optimized for optical access, high-current Bitter electromagnets, and an updated computer control system. We discuss in-depth the implementation of an insulated-gate bipolar transistor (IGBT) for fast current control of the magnetic field coils. We also present the design of JQI AutomatioN for Experiments (JANE): a programmable system on chip (PSoC)-based pseudoclock device that we use as the main clocking device for our experiments. Next, we report the realization of the first magneto-optical trap (MOT) of an alkaline-earth atom with a tetrahedral trap geometry produced by a nanofabricated diffraction grating. We have demonstrated a broad-line MOT in bosonic 88Sr and fermionic 87Sr. We trap approximately 4x10^7 atoms of 88Sr and achieve temperatures of around 6 mK, with a trap lifetime of around 1 s. Finally, we demonstrate sawtooth wave adiabatic passage (SWAP) in a narrow-line MOT of 88Sr atoms. In the narrow-line MOT, we trap approximately 3x10^6 atoms, with an average temperature of 3.4 µK and a trap lifetime of 0.77 s. We also discuss the possibility for a narrow- line grating MOT of the fermionic isotope. Our work with strontium grating MOTs is a step in the direction of compact quantum devices with alkaline-earth atoms.
  • Thumbnail Image
    Item
    Many-Body Dephasing in a Cryogenic Trapped Ion Quantum Simulator
    (2019) Kaplan, Harvey B.; Monroe, Christopher R; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    While realizing a fully functional quantum computer presents a long term technical goal, in the present, there are small to mid-sized quantum simulators (up to $\sim 100$ qubits), that are capable of approaching specialized problems. The quantum simulator discussed here uses trapped ions to act as qubits and is housed in a cryogenically cooled vacuum chamber in order to reduce the background pressure, thereby increasing ion chain length and life-time. The details of performance and characterization of this cryogenic apparatus are discussed, and this system is used to study many-body dephasing in a finite-sized quantum spin system. How a closed quantum many-body system relaxes and dephases as a function of time is important to understand when dealing with many-body spin systems. In this work, the first experimental observation of persistent temporal fluctuations after a quantum quench is presented with a tunable long-range interacting transverse-field Ising Hamiltonian. The fluctuations in the average magnetization of a finite-size system of spin-$1/2$ particles are measured presenting a direct measurement of relaxation dynamics in a non-integrable system. This experiment is in the regime where the properties of the system are closely related to the integrable Hamiltonian with global coupling. The system size is varied in order to investigate the dependence on finite-size scaling, and the system size scaling exponent extracted from the measured fluctuations is consistent with theoretical prediction.
  • Thumbnail Image
    Item
    CONSTRUCTION, OPTIMIZATION, AND APPLICATIONS OF A SMALL TRAPPED-ION QUANTUM COMPUTER
    (2019) Landsman, Kevin Antony; Monroe, Christopher; Electrical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    A large-scale quantum computer will have the ability to solve many computational problems beyond the capabilities of today's most powerful computers. Significant efforts to build such a computer are underway, many of which are small prototypes that are believed to be extensible to larger systems. Such systems, like the one in this thesis built off of 171Yb+ ions, are enticing scientific endeavors for their potential to inform the production of large-scale systems, as well as the interesting experiments they can perform. In this work, experimental research is presented on both topics: scalability as well as compelling computations. The first half of this thesis discusses building and optimizing a quantum computer to have high-fidelity qubit operations. An experimental architecture that allows for individual addressing and individual detection of qubits is presented alongside a discussion of errors and error-reduction. We derive the coherent manipulation of qubits using Raman lasers for rotational gates and the criteria necessary for multi-qubit entangling gates. Methods for efficiently fulfilling these criteria are presented with experimental data. Lastly, we consider coherence-related properties of the system necessary to perform these operations and how they can be experimentally improved. The second half of the thesis features three experimental applications of the quantum computer: quantifying quantum scrambling, applying a quantum error correction code, and measuring Renyi entropy. Quantum scrambling is the coherent delocalization of information through a quantum system and is notably difficult to quantify experimentally. We present an efficient scheme to measure it using quantum teleportation. Quantum error correction is a set of techniques for mitigating the effect of imperfect operations performed on a quantum computer, and we demonstrate some of these techniques in order to fault-tolerantly prepare a logical qubit. Lastly, \renyi entropy is an information theoretic quantity that can be used to directly quantify the amount of entanglement in a system. We present a method for measuring it efficiently using a quantum gate known as a Fredkin gate.
  • Thumbnail Image
    Item
    Studies of Ultracold Strontium Gases
    (2017) Reschovsky, Benjamin; Campbell, Gretchen K.; Rolston, Steven L.; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    We describe the operation and performance of an ultracold strontium apparatus that is capable of generating quantum degenerate gases. The experiment has produced Bose-Einstein condensates (BECs) of 84Sr and 86Sr as well as degenerate Fermi gases (DFGs) of 87Sr with a reduced temperature of T/TF = 0.2 at a Fermi temperature of TF = 55 nK. Straightforward modifications could be made to allow for isotopic mixtures and BECs of the fourth stable isotope, 88Sr. We also report on a technique to improve the continuous loading of a magnetic trap by adding a laser tuned to the 3P1 - 3S1 transition. The method increases atom number in the magnetic trap and subsequent cooling stages by up to 65% for the bosonic isotopes and up to 30% for the fermionic isotope of strontium. We optimize this trap loading strategy with respect to laser detuning, intensity, and beam size. To understand the results, we develop a one-dimensional rate equation model of the system, which is in good agreement with the data. We discuss the use of other transitions in strontium for accelerated trap loading and the application of the technique to other alkaline-earth-like atoms. Finally, we also report on an updated investigation of photoassociation resonances relative to the 1S0 + 3P1 dissassociation limit in bosonic strontium. Multiple new resonances for 84Sr and 86Sr were measured out to binding energies of -5 GHz and several discrepancies in earlier measurements were resolved. These measurements will allow for the development of a more accurate mass-scaled model and a better theoretical understanding of the molecular potentials near the 3P1 state. We also measure the strength of the 84Sr 0u transitions in order to characterize their use as optical Feshbach resonances.
  • Thumbnail Image
    Item
    A Modular Quantum System of Trapped Atomic Ions
    (2015) Hucul, David Alexander; Monroe, Christopher R; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Scaling up controlled quantum systems to involve large numbers of qubits remains one of the outstanding challenges of quantum information science. One path toward scalability is the use of a modular architecture where adjacent qubits may be entangled with applied electromagnetic fields, and remote qubits may be entangled using photon interference. Trapped atomic ion qubits are one of the most promising platforms for scaling up quantum systems by combining long coherence times with high fidelity entangling operations between proximate and remote qubits. In this thesis, I present experimental progress on combining entanglement between remote atomic ions separated by 1 meter with near-eld entanglement between atomic ions in the same ion trap. I describe the experimental improvements to increase the remote entanglement rate by orders of magnitude to nearly 5 per second. This is the first experimental demonstration where the remote entanglement rate exceeds the decoherence rate of the entangled qubits. The flexibility of creating remote entanglement through photon interference is demonstrated by using the interference of distinguishable photons without sacrificing remote entanglement rate or fidelity. Next I describe the use of master clock in combination with a frequency comb to lock the phases of all laser-induced interactions between remote ion traps while removing optical phase stability requirements. The combination of both types of entanglement gates to create a small quantum network are described. Finally, I present ways to mitigate cross talk between photonic and memory qubits by using different trapped ion species. I show preliminary work on performing state detection of nuclear spin 0 ions by using entanglement between atomic ion spin and photon polarization. These control techniques may be important for building a large-scale modular quantum system.