UMD Theses and Dissertations

Permanent URI for this collectionhttp://hdl.handle.net/1903/3

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a given thesis/dissertation in DRUM.

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Effect of Air on Rumen Gas Production
    (2021) Rha, Rachel Youngah; Kohn, Richard A; Animal Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Ruminants may swallow air as they eat and ruminate throughout the day. However, it is unclear as to how the introduction of oxygen impacts fermentation pathways, bacteria, and yeast within this mostly anaerobic environment. Therefore, the focus of this thesis was to study air’s impact on rumen fermentation and to determine if probiotics could offset air’s impact on digestibility. An in vitro analysis of air and probiotics indicated the main effect of air decreased digestibility, the main effect of probiotics had variable effects, and probiotics had significant interactions with air. The interactions suggested yeast employing a potential alternative pathway with the introduction of oxygen. Utilizing published literature, a static and dynamic mathematical model was built to further analyze digestibility, gas composition, and uptake of oxygen within the rumen. Future studies will further develop this model with in vivo studies to further interpretation and understanding of rumen fermentation’s complex system.
  • Thumbnail Image
    Item
    DESIGN, ANALYSIS, AND TESTING OF A FLAPPING WING MINIATURE AIR VEHICLE
    (2010) Gerdes, John William; Gupta, Satyandra K; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Flapping wing miniature air vehicles (MAVs) offer several advantageous performance benefits, relative to fixed-wing and rotary-wing MAVs. The goal of this thesis is to design a flapping wing MAV that achieves improved performance by focusing on the flapping mechanism and the spar arrangement in the wings. Two variations of the flapping mechanism are designed and tested, both using compliance as a technique for improved functionality. In the design of these mechanisms, kinematics and dynamics simulation is used to evaluate how forces encountered during wing flapping affect the mechanism. Finite element analysis is used to evaluate the stress and deformation of the mechanism, such that a lightweight yet functional design can be realized. The wings are tested using experimental techniques. These techniques include high speed photography, stiffness measurement, and lift and thrust measurements. Experimentally measured force results are validated with a series of flight tests. A framework for iterative improvement of the MAV is described, that uses the results of physical testing and simulations to investigate the underlying causes of MAV performance aspects; and seeks to capture those beneficial aspects that will allow for performance improvements. Wings and flapping mechanisms designed in this thesis are used to realize a bird-inspired flapping wing miniature air vehicle. This vehicle is capable of radio controlled flights indoors and outdoors in winds up to 6.7m/s with controlled steering, ascent, and descent, as well as payload carrying abilities.