UMD Theses and Dissertations
Permanent URI for this collectionhttp://hdl.handle.net/1903/3
New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a given thesis/dissertation in DRUM.
More information is available at Theses and Dissertations at University of Maryland Libraries.
Browse
3 results
Search Results
Item INTERACTIONS BETWEEN NITROGEN AND TEMPERATURE ON THE METABOLISM OF THE RED-TIDE MIXOTROPHIC DINOFLAGELLATE KARENIA SPP. IN SUPPORT OF PREDICTIVE MODELS: IMPLICATIONS FOR BLOOM DYNAMICS ON THE WEST FLORIDA SHELF(2023) Ahn, So Hyun; Glibert, Patricia; Marine-Estuarine-Environmental Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)The toxic mixotrophic dinoflagellate Karenia spp. forms blooms almost annually in the Gulf of Mexico, especially on the West Florida Shelf (WFS). Blooms typically initiate in early fall but can persist from months to years. Daily, Karenia vertically migrates to the surface water during the day, possibly experiencing changes in temperature, light, nitrogen (N), and prey type and availability. Therefore, this dissertation aimed to examine the interplay between Karenia’s photo-autotrophic and phago-mixotrophic metabolism and the short-term fluctuations in environmental conditions to understand how these factors may relate to the conditions under which Karenia spp. are found in the WFS.Title of Dissertation: INTERACTIONS BETWEEN NITROGEN AND TEMPERATURE ON THE METABOLISM OF THE RED-TIDE MIXOTROPHIC DINOFLAGELLATE KARENIA SPP. IN SUPPORT OF PREDICTIVE MODELS: IMPLICATIONS FOR BLOOM DYNAMICS ON THE WEST FLORIDA SHELF So Hyun (Sophia) Ahn, Doctor of Philosophy, 2023 Dissertation directed by: Professor Patricia M. Glibert, Marine Estuarine Environment Sciences A culture of K. mikimotoi balanced photon flux pressure (light availability) with consumption in overall metabolism when pulsed with 15N-NO3-, 15N-NH4+, or 15N-urea over the range of 15-25°C as shown by photosynthetic fluorescence. However, when shifted to 30°C, cells were significantly stressed, but urea-enriched cells showed a smaller decline in fluorescence, implying that urea might induce a photoprotective mechanism by increasing metabolic “pull.” Studies conducted with natural K. brevis winter and summer populations during 2021 showed that thermal history played a critical role. Unusually, summer blooms had higher biomass but were stressed photosynthetically and nutritionally. However, 15N-urea enriched summer cells had higher uptake rates as well as carbon (C) and N cell-1, especially in warmer waters, showing differential thermal responses based on N forms. Mixotrophy grazing measurements showed that K. brevis grazed both the picoplankter Synechococcus as well as the cryptophyte Rhodomonas. Grazing did not selectively target specific qualities of Synechococcus (based on differing N and P of the prey growth media), but ingestion rates were a function of prey-to-grazer ratios (R2=0.76) as well as prey amounts (R2=0.71). NanoSIMS confirmed 15N incorporation from Synechococcus in K. brevis. In natural communities of K. brevis, ingestion rates were also significantly related to prey-to-grazer ratios (p < 0.01) and by temperatures (p < 0.05) to a lesser degree (R2= 0.75) when incubated at ambient (24°C) and ambient temperature ± 5°C (19, 29°C). The grazer effects on the photosynthetic performance of grazer and prey were also examined. Grazing on Synechococcus indirectly reduce the photosynthetic performance of prey, especially at warmer temperatures but had little or no effect on the photosynthesis of K. brevis itself.Item MICROBIAL INTERACTIONS AND ECOLOGY WITHIN BLOOMS OF THE TOXIC DINOFLAGELLATE KARENIA brevis ON THE WEST FLORIDA SHELF.(2013) Meyer, Kevin Anthony; O'Neil, Judith M; Marine-Estuarine-Environmental Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)The dinoflagellate Karenia brevis is capable of significant ecological and economic impacts in Florida waters where blooms typically occur. Blooms and cultures of K. brevis were sampled to determine the composition, production, and possible ecological function of bacteria and virus communities associated with K. brevis. Bacterial communities on the West Florida Shelf (WFS) were similar inside and outside K. brevis blooms, but primary and secondary (bacterial) production and bacteria and virus abundances were different depending on bloom stage. Bloom stages need to be identified so that discrete sampling events can be combined to characterize an entire bloom event. Within an initiating bloom bacterial production and mortality was high and viral abundance was low, suggesting that viral genomes were either within host cells or bacterial mortality was due to mixotrophic grazing by K. brevis or heterotrophic nanoflagellates. In a maintenance phase bloom the bacterial community was metabolically stressed, subject to increased viral infection, and most likely not being subjected to mixotrophic grazing. Bacterial communities associated with healthy K. brevis were dominated by the Cytophaga-Flavobacterium-Bacteroides (CFB) complex. As K. brevis shifted to stationary or senescing growth communities had higher proportions of Alphaproteobacteria. The SAR406 group, typically found in deep waters, was present in the surface waters of the WFS which supports existing K. brevis bloom formation hypotheses involving upwelling of deep waters from the mid to outer shelf. The CFB complex of bacteria also need to be further investigated as the consistent presence of CFB bacteria in both blooms and cultures of K. brevis suggest CFB bacteria are capable of numerous interactions with K. brevis. Furthermore, such interactions may be a vector of bloom control through viral infection; a high proportion of CFB bacteria would be ideal for density-dependent viral infection which could disrupt interactions between bacteria and K. brevis. Inoculating cultures of K. brevis, which included associated bacteria, with viral concentrates from the WFS showed differences in bacterial production and growth which indicate viruses are acting upon the bacterial community and not the dinoflagellates. Interactions between bacteria and K. brevis need to be further elucidated and explored for a better understanding of the role of each in dynamics of this harmful algal species. There may be a natural community succession amongst bacteria during blooms: utilizing certain indicator species to indicate bloom stage and transition between stages may aid in bloom forecasting and detection efforts.Item Zooplankton Population Dynamics in Relation to the Red Tide Dinoflagellate Karenia brevis on the West Florida Shelf of the Gulf of Mexico(2012) Walsh, Brianne Marie; O'Neil, Judith M; Marine-Estuarine-Environmental Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Blooms of the toxin producing dinoflagellate Karenia brevis are common in the Gulf of Mexico, and while several studies have investigated nutrient sources and bloom processes, there has been less research in regards to zooplankton population dynamics within these blooms. Zooplankton community structure and copepod species composition were analyzed from samples collected on the West Florida Shelf during October 2007-2010. Copepods constituted the most important zooplankton group, averaging 60% of total abundance. In 2009 there was a significant difference between the abundance of zooplankton at stations within a K. brevis bloom. As the K. brevis bloom progressed, total zooplankton abundance decreased. Additionally, the role of zooplankton within Karenia brevis blooms was investigated as both grazers of primary productivity and potential sources of regenerated nutrients.