UMD Theses and Dissertations

Permanent URI for this collectionhttp://hdl.handle.net/1903/3

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a given thesis/dissertation in DRUM.

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    A GALLIUM NITRIDE INTEGRATED ONBOARD CHARGER
    (2020) Zou, Shenli; Khaligh, Alireza; Electrical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Compared to Silicon metal–oxide–semiconductor field-effect transistors (MOSFETs), Gallium Nitride (GaN) devices have a significant reduction in gate charge, output capacitance, and zero reverse recovery charge, enabling higher switching frequency operation and efficient power conversion. GaN devices are gaining momentum in power electronic systems such as electric vehicle (EV) charging system, due to their promises to significantly enhance the power density and efficiency. In this dissertation, a GaN-based integrated onboard charger (OBC) and auxiliary power module (APM) is proposed for EVs to ensure high efficiency, high frequency, high power density, and capability of bidirectional operation. The high switching frequency operation enabled by the GaN devices and the integration of OBC and APM bring many unique challenges, which are addressed in this dissertation. An important challenge is the optimal design of high-frequency magnetics for a high-frequency GaN-based power electronic interface. Another challenge is to achieve power flow management among three active ports while minimizing the circulating power. Furthermore, the impact of circuit layout parasitics could significantly deteriorate the system interface, due to the sensitivity of GaN device switching characteristics. In this work, the aforementioned challenges have been addressed. First, a comprehensive analysis of the front-end AC-DC power factor correction stage is presented, covering a detailed magnetic modeling technique to address the high-frequency magnetics challenge. Second, the modeling and control of a three-port DC-DC converter, interfacing the AC-DC stage, high-voltage traction battery and low-voltage battery, are discussed to address the power flow challenge. Advanced control methodologies are developed to realize power flow management while maintaining minimum circulating power and soft switching. Furthermore, a new three-winding high-frequency transformer design with improved power density and efficiency is achieved using a genetic-algorithm-based optimization approach. Finally, a GaN-based integrated charger prototype is developed to validate the proposed theoretical hypothesis. The experimental results showed that the GaN-based charging system has the capability of achieving simultaneous charging (G2B) of both HV and LV batteries with a peak efficiency of 95%.
  • Thumbnail Image
    Item
    Integrated Methodology for Thermal-Hydraulics Uncertainty Analysis (IMTHUA)
    (2007-01-25) Pour-Gol-Mohamad, Mohammad; Modarres, Mohammad; Mosleh, Ali; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    This dissertation describes a new integrated uncertainty analysis methodology for "best estimate" thermal hydraulics (TH) codes such as RELAP5. The main thrust of the methodology is to utilize all available types of data and information in an effective way to identify important sources of uncertainty and to assess the magnitude of their impact on the uncertainty of the TH code output measures. The proposed methodology is fully quantitative and uses the Bayesian approach for quantifying the uncertainties in the predictions of TH codes. The methodology also uses the data and information for a more informed and evidence-based ranking and selection of TH phenomena through a modified PIRT method. The modification considers importance of various TH phenomena as well as their uncertainty importance. In identifying and assessing uncertainties, the proposed methodology treats the TH code as a white box, thus explicitly treating internal sub-model uncertainties, and propagation of such model uncertainties through the code structure as well as various input parameters. A The TH code output is further corrected through a Bayesian updating with available experimental data from integrated test facilities. It utilizes the data directly or indirectly related to the code output to account implicitly for missed/screened out sources of uncertainties. The proposed methodology uses an efficient Monte Carlo sampling technique for the propagation of uncertainty using modified Wilks sampling criteria. The methodology is demonstrated on the LOFT facility for 200% cold leg LBLOCA transient scenario.