UMD Theses and Dissertations

Permanent URI for this collectionhttp://hdl.handle.net/1903/3

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a given thesis/dissertation in DRUM.

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Real-Time Cybersecurity Situation Awareness Through a User-Centered Network Security Visualization
    (2022) DeValk, Kaitlyn; Elmqvist, Niklas; Computer Science; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    One of the most common problems amongst cybersecurity defenders is lack of network visibility, leading to decreased situation awareness and overlooked indicators of compromise. This presents an opportunity for the use of information visualization in the field of cybersecurity. Prior research has looked at applying visual analytics to computer network defense, which has led to the development of visualizations for a variety of use cases in the security field. However, many of these visualizations do not consider user needs and requirements or require some predetermined user knowledge about the network to create the visuals, leading to low adoption in practice. With this in mind, I took a bottom-up, user-centered approach using interviews to gather user-desired components for the design, development, and evaluation of a network security visualization tool, called Riverside. I designed a visualization that attempts to balance providing a comprehensive view of an environment while supplying details-on-demand. Riverside’s key contribution is a data-driven, dynamic view of a network’s security state over time, meant to supplement an analyst’s real-time situation awareness of their network. Riverside’s system automatically partitions internal from external network components to visualize potential attack vectors across the entire environment. This research supports the need for further incorporation of users into the cybersecurity visualization development lifecycle. I call attention to key requirements for creating effective cybersecurity visualizations and specific use cases where visualizations can be leveraged to augment operational cybersecurity capabilities.
  • Thumbnail Image
    Item
    DATA-DRIVEN STORYTELLING FOR CASUAL USERS
    (2019) Zhao, Zhenpeng; Elmqvist, Niklas; Computer Science; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Today’s overwhelming volume of data has made effective analysis virtually inaccessible for the general public. The emerging practice of data-driven storytelling is addressing this by framing data using familiar mechanisms such as slideshows, videos, and comics to make even highly complex phenomena understandable. However, current data stories still do not utilize the full potential of the storytelling domain. One reason for this is that current data-driven storytelling practice does not leverage the full repertoire of media that can be used for storytelling, such as speech, e-learning, and video games. In this dissertation, we propose a taxonomy focused specifically on media types for the purpose of widening the purview of data-driven storytelling by putting more tools in the hands of designers. We expand the idea of data-driven storytelling into the group of casual users, who are the consumers of information and non-professionals with limited time, skills, and motivation , to bridge the data gap between the advanced data analytics tools and everyday internet users. To prove the effectiveness and the wide acceptance of our taxonomy and data-driven storytelling among the casual users, we have collected examples for data-driven storytelling by finding, reviewing, and classifying ninety-one examples. Using our taxonomy as a generative tool, we also explored two novel storytelling mechanisms, including live-streaming analytics videos—DataTV—and sequential art (comics) that dynamically incorporates visual representations—Data Comics. Meanwhile, we widened the genres we explored to fill the gaps in the literature. We also evaluated Data Comics and DataTV with user studies and expert reviews. The results show that Data Comics facilitates data-driven storytelling in terms of inviting reading, aiding memory, and viewing as a story. The results also show that an integrated system as DataTV encourages authors to create and present data stories.