UMD Theses and Dissertations

Permanent URI for this collectionhttp://hdl.handle.net/1903/3

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a given thesis/dissertation in DRUM.

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    ACTIVE VIBRATION ATTENUATING SEAT SUSPENSION FOR AN ARMORED HELICOPTER CREW SEAT
    (2013) Sztein, Pablo Javier; Wereley, Norman M; Aerospace Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    An Active Vibration Attenuating Seat Suspension (AVASS) for an MH-60S helicopter crew seat is designed to protect the occupants from harmful whole-body vibration (WBV). Magnetorheological (MR) suspension units are designed, fabricated and installed in a helicopter crew seat. These MR isolators are built to work in series with existing Variable Load Energy Absorbers (VLEAs), have minimal increase in weight, and maintain crashworthiness for the seat system. Refinements are discussed, based on testing, to minimize friction observed in the system. These refinements include the addition of roller bearings to replace friction bearings in the existing seat. Additionally, semi-active control of the MR dampers is achieved using special purpose built custom electronics integrated into the seat system. Experimental testing shows that an MH-60S retrofitted with AVASS provides up to 70.65% more vibration attenuation than the existing seat configuration as well as up to 81.1% reduction in vibration from the floor.
  • Thumbnail Image
    Item
    Development of Magnetorheological Fluid Elastomeric Dampers for Helicopter Stability Augmentation
    (2005-12-06) hu, wei; Wereley, Norman M; Aerospace Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Conventional lag dampers use passive materials, such as elastomers, to dissipate energy and provide stiffness, but their damping and stiffness levels diminish markedly as amplitude of damper motion increases. Magnetorheological (MR) fluids based dampers have controllable damping with little or no stiffness. In order to combine the advantages of both elastomeric materials and MR fluids, semi-active magnetorheological fluid elastomeric (MRFE) lag dampers are developed in this thesis. In such a damper configuration, magnetic valves are incorporated into the chamber enclosed by elastomeric layers. Preliminary MRFE damper design analysis was conducted using quasi-steady Bingham-plastic MR flow mode analysis, and MRFE damper performance was evaluated analytically. To investigate the feasibility of using a combination of magnetorheological (MR) fluids and elastomeric materials for augmentation of lag mode damping in helicopters, a semi-active linear stroke MRFE lag damper was developed as a retrofit to an existing elastomeric helicopter lag damper. Consistent with sinusoidal loading conditions for a helicopter lag damper, single frequency (lag/rev) and dual frequency (lag/rev and 1/rev) sinusoidal loadings were applied to the MRFE damper. Complex modulus and equivalent damping were used to compare the characteristics of the MRFE damper with the passive elastomeric damper. The experimental damping characteristics of the MRFE damper were consistent with the analytical results obtained from the Bingham plastic analysis of the MR valve. Based on measurements, the Field-OFF MRFE characteristics are similar to the passive elastomeric damping, and controllable damping as a function of different flight conditions is also feasible as the applied current is varied in the MR valve. A second key objective of the present research is to develop an analytical model to describe the nonlinear behavior demonstrated by an MRFE damper. Since the damping behavior of both elastomers and MR fluids is dominated by friction mechanisms, a rate-dependent elasto-slide element is developed to describe the friction characteristics. An MR model developed from a single elasto-slide element successfully emulated the yield behavior of the MR damper, and this model captured nonlinear amplitude and frequency dependent behavior of MR dampers using constant model parameters. Meanwhile, using a distributed elasto-slide structure, an elastomeric model was developed to describe the stiffness and damping behavior of the elastomer as the amplitude of excitation increases. The fidelity of this five parameters time domain model is demonstrated by good correlation between modeling and experimental results for both the complex modulus and steady-state hysteresis cycles. Since an MRFE damper was shown to be a linear combination of the elastomeric and MR component, a time domain MRFE damper model was constructed based on the linear combination of the MR and elastomer models to describe the nonlinear behavior of the MRFE damper. Good correlation between the model and experimental data demonstrates the feasibility of the MRFE model for future MRFE damper applications.