UMD Theses and Dissertations

Permanent URI for this collectionhttp://hdl.handle.net/1903/3

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a given thesis/dissertation in DRUM.

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    USING A BURNING RATE EMULATOR (BRE) TO EMULATE CONDENSED FUELS AND STUDY POOL FIRE BEHAVIOR IN 1G
    (2019) Auth, Eric; Sunderland, Peter B; Quintiere, James G; Fire Protection Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    The Burning Rate Emulator (BRE) is a device constructed to emulate condensed fuels using gaseous fuel mixtures by matching heat of combustion, heat of gasification, smoke point, and surface temperature. The burner’s heat flux gauges are calibrated for local heat flux measurements and the copper top-plate calorimeter is calibrated for measuring net heat flux to the surface, which allows for determination of an effective heat of gasification to compare to condensed fuels. Seven condensed fuels with known properties are burned and emulated using methane, ethylene, and propylene gas diluted with nitrogen. Propane gas is used to study the general pool fire characteristics displayed by gaseous flames on the BRE. Flame anchoring, flammability regions, flame height, and convective heat transfer are analyzed. Based on a radial heat flux distribution, the readings from the heat flux sensors agree with the calorimeter when applied to a flame. Example flame images are shown.
  • Thumbnail Image
    Item
    Development and analysis of a Burning Rate Emulator (BRE) for study in microgravity
    (2018) Markan, Akshit; Sunderland, Peter B.; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    The Burning Rate Emulator (BRE) is a gas-fueled burner that emulates real condensed fuel flames. This is accomplished by matching four fundamental properties: heat of gasification, heat of combustion, surface temperature, and smoke point. The aim of the current study is to establish immediate sustained BRE flames in a calm microgravity environment. This study presents 49 tests at NASA Glenn's 5.18-s Zero Gravity Research Facility for two burner diameters (25 mm and 50 mm). The burner sizes and test parameters are chosen to emulate small laminar pool fires. The experiments show that the flames are nearly hemispherical at the end of the 5-s experiment, with the flame height still increasing. The heat flux initially falls quickly and then becomes steadier. Steady-state theory correlates the end-of-drop experimental data for the flame heat flux, and therefore the fuel burning rate. The apparent lack of correlation of the burning rate for the larger burner is attributed to gas radiation. The burner's perforated copper plate, which has two embedded heat flux thermopile sensors, is calibrated as a slug calorimeter. The calorimeter provides the average heat flux over the burner surface as a function of time. During the 5-s microgravity experiments, average heat fluxes measured with the calorimeter agree with the locally measured heat fluxes through a theoretical distribution function. The results show that the average calorimeter heat flux and the two local heat flux measurements are in harmony over a wide range of microgravity flame fluxes ranging from 5-20 kW/m^2, with the edge heat flux much higher. The transient combustion model formulated in oblate ellipsoidal coordinates is developed to analyze the behavior of the microgravity BRE flames. The model is axially symmetric and considers the burning of gaseous fuel leaving the surface of a porous ellipsoidal burner in microgravity. A composite solution is generated as a product of an exact steady state solution and an asymptotic transient solution that becomes exact far from the burner. The transient combustion model predicts that quasi-steady microgravity BRE flames will require much longer than 5 seconds.