UMD Theses and Dissertations

Permanent URI for this collectionhttp://hdl.handle.net/1903/3

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a given thesis/dissertation in DRUM.

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    Item
    NOVEL TECHNOLOGIES AND APPLICATIONS FOR FLUORESCENT LAMINAR OPTICAL TOMOGRAPHY
    (2017) Tang, Qinggong Tang; Chen, Yu; Bioengineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Laminar optical tomography (LOT) is a mesoscopic three-dimensional (3D) optical imaging technique that can achieve both a resolution of 100-200 µm and a penetration depth of 2-3 mm based either on absorption or fluorescence contrast. Fluorescence laminar optical tomography (FLOT) can also provide large field-of-view (FOV) and high acquisition speed. All of these advantages make FLOT suitable for 3D depth-resolved imaging in tissue engineering, neuroscience, and oncology. In this study, by incorporating the high-dynamic-range (HDR) method widely used in digital cameras, we presented the HDR-FLOT. HDR-FLOT can moderate the limited dynamic range of the charge-coupled device-based system in FLOT and thus increase penetration depth and improve the ability to image fluorescent samples with a large concentration difference. For functional mapping of brain activities, we applied FLOT to record 3D neural activities evoked in the whisker system of mice by deflection of a single whisker in vivo. We utilized FLOT to investigate the cell viability, migration, and bone mineralization within bone tissue engineering scaffolds in situ, which allows depth-resolved molecular characterization of engineered tissues in 3D. Moreover, we investigated the feasibility of the multi-modal optical imaging approach including high-resolution optical coherence tomography (OCT) and high-sensitivity FLOT for structural and molecular imaging of colon tumors, which has demonstrated more accurate diagnosis with 88.23% (82.35%) for sensitivity (specificity) compared to either modality alone. We further applied the multi-modal imaging system to monitor the drug distribution and therapeutic effects during and after Photo-immunotherapy (PIT) in situ and in vivo, which is a novel low-side-effect targeted cancer therapy. A minimally-invasive two-channel fluorescence fiber bundle imaging system and a two-photon microscopy system combined with a micro-prism were also developed to verify the results.