UMD Theses and Dissertations

Permanent URI for this collectionhttp://hdl.handle.net/1903/3

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a given thesis/dissertation in DRUM.

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    Item
    Biofilm formation by Escherichia coli O157:H7
    (2007-12-14) Silagyi, Karen Suzanne; Lo, Y. Martin; Kim, Shin-Hee; Food Science; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Escherichia coli O157:H7 from cattle was evaluated for its ability to produce biofilm on food contact surfaces and quorum sensing signals in various raw meat, raw poultry, and produce broths. Generally, the strain was able to attach and form the most biofilm on stainless steel. Transfer of cells attached to stainless steel was observed onto various raw meat, raw poultry, ready-to-eat deli meats, and produce products as high as 104 CFU/cm2. E. coli O157:H7 isolated from 14 animal, food, and human sources were characterized on antimicrobial susceptibility, ability to form biofilm, and production of curli fimbriae and cellulose. Strains isolated from cattle, retail chicken, and retail beef were able to form strong biofilms in addition to curli and cellulose production. Additionally, E. coli O157:H7 from retail chicken showed considerable antimicrobial resistance. This study suggests E. coli O157:H7 biofilms pose significant risk to continuous contamination of a variety of food products.