UMD Theses and Dissertations

Permanent URI for this collectionhttp://hdl.handle.net/1903/3

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a given thesis/dissertation in DRUM.

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    ROLE OF ICAM-1-MEDIATED ENDOCYTOSIS IN ENDOTHELIAL FUNCTION AND IMPLICATIONS FOR CARRIER-ASSISTED DRUG DELIVERY
    (2014) Serrano, Daniel; Muro, Silvia; Biology; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Intercellular adhesion molecule 1 (ICAM-1) is a transmembrane protein found on the surface of vascular endothelial cells (ECs). Its expression is upregulated at inflammatory sites, allowing for targeted delivery of therapeutics using ICAM-1-binding drug carriers. Engagement of multiple copies of ICAM-1 by these drug carriers induces cell adhesion molecule (CAM)-mediated endocytosis, which results in trafficking of carriers to lysosomes and across ECs. Knowledge about the regulation behind CAM-mediated endocytosis can help improve drug delivery, but questions remain about these regulatory mechanisms. Furthermore, little is known about the natural function of this endocytic pathway. To address these gaps in knowledge, we focused on two natural binding partners of ICAM-1 that potentially elicit CAM-mediated endocytosis: leukocytes (which bind ICAM-1 via β2 integrins) and fibrin polymers (a main component of blood clots which binds ICAM-1 via the γ3 sequence). First, inspired by properties of these natural binding partners, we varied the size and targeting moiety of model drug carriers to determine how these parameters affect CAM-mediated endocytosis. Increasing ICAM-1-targeted carrier size slowed carrier uptake kinetics, reduced carrier trafficking to lysosomes, and increased carrier transport across ECs. Changing targeting moieties from antibodies to peptides decreased particle binding and uptake, lowered trafficking to lysosomes, and increased transport across ECs. Second, using cell culture models of leukocyte/EC interactions, inhibiting regulatory elements of the CAM-mediated pathway disrupted leukocyte sampling, a process crucial to leukocyte crossing of endothelial layers (transmigration). This inhibition also decreased leukocyte transmigration across ECs, specifically through the transcellular route, which occurs through a single EC without disassembly of cell-cell junctions. Third, fibrin meshes, which mimic blood clot fragments/remnants, bound to ECs at ICAM-1-enriched sites and were internalized by the endothelium. Inhibiting the CAM-mediated pathway disrupted this uptake. Following endocytosis, fibrin meshes trafficked to lysosomes where they were degraded. In mouse models, CAM-mediated endocytosis of fibrin meshes appeared to remove fibrin remnants at the endothelial surface, preventing re-initiation of the coagulation cascade. Overall, these results support a link between CAM-mediated endocytosis and leukocyte transmigration as well as uptake of fibrin materials by ECs. Furthermore, these results will guide the future design of ICAM-1-targeted carrier-assisted therapies.
  • Thumbnail Image
    Item
    ROLE OF ACID SPHINGOMYELINASE IN ICAM-1/NHE1-DEPENDENT ENDOCYTOSIS: IMPLICATIONS IN LEUKOCYTE TRANSMIGRATION
    (2010) Serrano, Daniel; Muro, Silvia; Cell Biology & Molecular Genetics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Engagement of intercellular adhesion molecule-1 (ICAM-1) on endothelial cells (ECs) by anti-ICAM coated beads generates vesiculization via cell adhesion molecule (CAM)-mediated endocytosis, a clathrin-/caveolae-independent pathway involving Na+/H+ exchanger 1 (NHE1). ICAM-1 itself plays a key role in transendothelial migration (TEM) of leukocytes, particularly via the transcellular route. This involves endothelial endocytic vesicles that coalesce into transmigration pores, through which leukocytes transmigrate without disrupting EC junctions. The contribution of CAM-mediated endocytosis to the formation of docking sites and vesicular structures supporting TEM was explored in this study. Results show that the ICAM-1/NHE1-dependent CAM-mediated pathway associates with acid sphingomyelinase and ceramide. This supports plasmalemma deformability and cytoskeleton rearrangement, bridging these events to the formation of endothelial docking structures and vesicles involved in leukocyte transmigration.