UMD Theses and Dissertations

Permanent URI for this collectionhttp://hdl.handle.net/1903/3

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a given thesis/dissertation in DRUM.

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    Item
    Biomimetic polymer based composites with 1-D titania fillers for dental applications
    (2018) Mallu, Rashmi Reddy; Lloyd, Isabel K; Material Science and Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    The aim of this study was to develop acrylic matrix composites reinforced with one-dimensional (1-D) titanium dioxide (TiO2) micro and nano fillers that mimic the structure of enamel. To accomplish this, 1-D TiO2 was synthesized without surfactants or templates using a sol-gel assisted hydrothermal process. Two different approaches were investigated. One used titanium metal powder and yielded TiO2 rutile microrods. The other used titanium tetraisopropoxide (TTIP) and created TiO2 anatase nanorods. TiO2 morphology (size, aspect ratio and state of agglomeration) was affected by glycolic acid concentration and phosphate ion concentration for the titanium metal-based powders, and NaOH concentration for TTIP based powders. Composites were made with silanized TiO2 micro- and nano-rods in a 50:50 BisGMA:TEGDMA matrix. Organized composites made by injection molding or centrifuging and settling had more uniform mechanical properties (hardness, strength, Young’s modulus and toughness) than unorganized composites. Curing the composites under pressure reduced porosity enhancing mechanical behavior.