UMD Theses and Dissertations

Permanent URI for this collectionhttp://hdl.handle.net/1903/3

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a given thesis/dissertation in DRUM.

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    Item
    LOW TEMPERATURE PLASMA-METAL INTERACTIONS: PLASMA-CATALYSIS AND ELECTRON BEAM-INDUCED METAL ETCHING
    (2024) Li, Yudong; Oehrlein, Gottlieb G; Material Science and Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Low-temperature plasma can generate different types of chemically reactive species at gas temperatures far below what is required to form such species from thermal excitation. Interactions between these reactive plasma-generated species and material surfaces have great potential for various applications, such as semiconductor etching or gas conversion. Synergistic effects, where the production rate with two inputs is greater than the sum of the consequences of each individually, have been demonstrated by combining the plasma with other energy inputs such as heat or kinetic energy from ions or electrons. Understanding the mechanisms by which these species interact with relevant surfaces is vital for the future development of plasma processing, chemistry and physics. In this work, we focus on the interaction of long-lived plasma species, particularly neutrals, with metal. A remote plasma-surface configuration was applied, where the plasma itself does not directly contact the surface. Two examples of plasma-metal interactions will be discussed, one taking place at atmospheric and the other at low pressure. The first case is plasma-assisted catalytic oxidation of methane (CH4) using a nickel (Ni) catalyst at atmospheric pressure, implemented by combining a remote plasma jet. The interrelation of real-time measurements of reaction products and surface adsorbates and plasma diagnostics allowed the identification of atomic oxygen as the key plasma-generated species that drives the synergistic plasma-catalytic reaction. The in-situ characterizations of the surface and gas phase reactions reveal the possible key reaction pathways for the plasma-catalysis reactions. We also observed the activation of the catalyst resulting from long-lasting catalyst surface modification induced by plasma species interaction. The second case is the damage-free etching of refractory metals, ruthenium (Ru) and tantalum (Ta), at low pressure. This was implemented by combining a remote plasma source (RPS) with an electron beam (EB) source. We investigated the effects of CF4 and Cl2 additions to Ar/O2 RPS effluents and we find that Ar/O2 with Cl2 addition induces the highest Ru etch rate (ER) and best removal selectivity over Ta. The surface chemistry characterization by spatially-resolved XPS reveals the possible mechanism of the electrons and neutrals induced materials etching. We also proposed a model that considers the fundamental aspects of the etching reaction and successfully predicts the major features of the electron and neutral induced etching reactions.