UMD Theses and Dissertations

Permanent URI for this collectionhttp://hdl.handle.net/1903/3

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a given thesis/dissertation in DRUM.

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    Item
    SMOKE POINTS OF MICROGRAVITY AND NORMAL GRAVITY COFLOW DIFFUSION FLAMES
    (2009) Dotson, Keenan Thomas; Sunderland, Peter B; Fire Protection Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Smoke points were measured in microgravity aboard the International Space Station (ISS) as part of the Smoke Points in Coflow Experiment (SPICE), and in normal gravity conditions. In microgravity conditions increasing the coflow velocity or decreasing the burner diameter increased the smoke point flame length. A simplified prediction of centerline jet velocity did not yield residence-time-based criticalities or data collapse. Simulation of non-reacting flows showed that the simplified centerline velocity prediction was able to predict velocity decay for only relatively weak coflows. An improved model may yield different results. In normal earth gravity coflow velocity exhibited mixed effects. For burner diameters of 0.41, 0.76, and 1.6 mm, smoke points increased with increases of coflow velocity. For an unconfined coflow burner with a burner diameter of 13.7 mm smoke point length decreased with increasing coflow velocity for ethylene and propylene, while increasing for propane flames.