UMD Theses and Dissertations

Permanent URI for this collectionhttp://hdl.handle.net/1903/3

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a given thesis/dissertation in DRUM.

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    Item
    Specific Targeting of RPW8 Family Proteins To and de novo Biogenesis of the Extrahaustorial Membrane in Arabidopsis Cells Invaded By Powdery Mildew Fungus
    (2013) Berkey, Robert Michael; Xiao, Shunyuan; Molecular and Cell Biology; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    The unique plant resistance (R) protein RPW8.1 and RPW8.2 confers broad-spectrum resistance in Arabidopsis to all tested isolates of Golovinomyces spp. fungi, the casual agents of powdery mildew disease in multiple plant species. RPW8.2 is specifically targeted to the extra-haustorial membrane (EHM) that encases the fungal feeding structure named the haustorium and represents the host-pathogen interface. EHM-localization of RPW8.2 correlates with haustorium-targeted host defense, providing subcellular evidence for the broad-spectrum resistance mediated by RPW8.2. RPW8.1 and RPW8.2 belong to a small gene family in the Arabidopsis and Brassica lineages. However, the cellular function of the other family members remains to be functionally characterized. Here, I report that all homologs of RPW8 (designated HR#) examined are EHM-residents, suggesting that the RPW8 family proteins share a common EHM-targeting signal. Moreover, through a reverse genetics approach I show that three Arabidopsis homologs, i.e. AtHR1, AtHR2 and AtHR3, appear to play a role in salicylic acid-dependent basal resistance against powdery mildew and perhaps other biotrophic pathogens. These results support our hypothesis that the two atypical resistance R genes, RPW8.1 and RPW8.2 evolved from duplication and functional diversification (enhancement) of a more ancient component of basal immunity in Arabidopsis (Chapter 2). Furthermore, I provide the first piece of cell biological evidence to suggest that the enigmatic EHM is formed via de novo synthesis rather than simple extension and differentiation of the host plasma membrane in the invaded host cell during the biogenesis of the fungal haustorium (Chapter 3). I also summarize my contribution to a project that aims to utilize RPW8 as a delivery vehicle to confer novel resistance in other crop species against a variety of fungal or oomycete haustorium-forming pathogens (Chapter 4) and ongoing efforts to further dissect the RPW8 defense and trafficking pathways in relation to bioactive phosphoinositides (Chapter 5) and to characterize putative interacting or signaling components of RPW8-mediated defense mechanisms against powdery mildew in Arabidopsis (Chapter 6).