Computer Science Theses and Dissertations
Permanent URI for this collectionhttp://hdl.handle.net/1903/2756
Browse
21 results
Search Results
Item Efficient Optimization Algorithms for Nonconvex Machine Learning Problems(2024) Xian, Wenhan; Huang, Heng HH; Computer Science; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)In recent years, the success of the AI revolution has led to the training of larger neural networks on vast amounts of data to achieve superior performance. These powerful machine learning models have enabled the creation of remarkable AI products. Optimization, as the core of machine learning, becomes especially crucial because most machine learning problems can ultimately be formulated as optimization problems, which require minimizing a loss function with respect to model parameters based on training samples. To enhance the efficiency of optimization algorithms, distributed learning has emerged as a popular solution for addressing large-scale machine learning tasks. In distributed learning, multiple worker nodes collaborate to train a global model. However, a key challenge in distributed learning is the communication cost. This thesis introduces a novel adaptive gradient algorithm with gradient sparsification to address this issue. Another significant challenge in distributed learning is the communication overhead on the central parameter server. To mitigate this bottleneck, decentralized distributed (serverless) learning has been proposed, where each worker node only needs to communicate with its neighbors. This thesis investigates core nonconvex optimization problems in decentralized settings, including constrained optimization, minimax optimization, and second-order optimality. Efficient optimization algorithms are proposed to solve these problems. Additionally, the convergence analysis of minimax optimization under the generalized smooth condition is explored. A generalized algorithm is proposed, which can be applied to a broader range of applications.Item Understanding and Enhancing Machine Learning Models with Theoretical Foundations(2024) Hu, Zhengmian; Huang, Heng HH; Computer Science; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Machine learning has become a key driver of many contemporary technological advancements. With its empirical success, there is an urgent need for theoretical research to explain and complement these practical achievements. This includes understanding the empirical success of machine learning, especially deep learning, and aiding the design of better algorithms in terms of performance, efficiency, and security. This dissertation aims to advance the understanding and practical development of machine learning through three interrelated research directions, while emphasizing reliable theoretical guarantees throughout the process. In the first part, we study the deep learning theory under overparameterization conditions. The core objects of study are the Conjugate Kernel and Neural Tangent Kernel, which have deep connections to the training dynamics of deep learning. Based on the analysis of these kernels, we prove several new concentration results characterizing the trainability and generalization of infinitely wide neural networks. In the second part, we focus on training algorithms. On one hand, we propose new algorithms to improve learning efficiency. This includes a new underdamped Langevin MCMC method called ALUM, for which we prove its complexity reaches the theoretical lower bound. On the other hand, we propose new theoretical tools to analyze existing algorithms and obtain tighter convergence results. For Proxskip, our analysis shows it can still achieve an improvement in communication complexity from sublinear to linear convergence under stochastic oracle. We also generalize the concept of Lipschitz smoothness for tighter non-convex optimization analysis. In the third part, we develop new Monte Carlo methods to large language models (LLMs) to improve their efficiency and security. We develop unbiased watermarking techniques to protect model outputs and propose an Accelerated Speculative Sampling method for faster inference. We also investigate the trade-off between watermark strength and inference sampling efficiency, pointing out the conflict between the two.Item Advancing the State of Auto-tuning with Programming Languages(2024) Chen, Ray Sun; Hollingsworth, Jeffrey K; Computer Science; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)In the realm of computer science, auto-tuning refers to techniques for software performance optimization. The focus of traditional auto-tuning research is to identify novel performance parameters to expand the optimization space for a given target software/platform combination, and improve the automated search within this optimization space. This makes high-performance computing (HPC) a prime candidate for auto-tuning research, as it sits at the nexus of architectural diversity and performance criticality. However, the major successes for HPC auto-tuning to date involve tailoring memory access patterns to specific cache hierarchies. While important, this is just a small piece of the overall performance portability puzzle. I argue that auto-tuning has room to expand and optimize a richer set of HPC application tuning parameters through the combination of novel non-intrusive programming language idioms and advanced lightweight online search techniques. I support my argument through four contributions to the field. This dissertation describes two techniques for expanding auto-tuning optimization spaces, and two techniques for distributing the auto-tuning search for parallel efficiency.Item QUANTUM COMBINATORIAL OPTIMIZATION ALGORITHMS FOR PACKING PROBLEMS IN CLASSICAL COMPUTING AND NETWORKING(2023) Unsal, Cem Mehmet; Oruc, Yavuz A; Applied Mathematics and Scientific Computation; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)In Computer Engineering, packing problems play a central role in many aspects of hardware control. The field aims to maximize computer processing speed, network throughput, and dependability in industry applications. Many of these constrained maximization problems can be expressed as packing problems in integer programming when working with restrictions such as latency, memory size, race conditions, power, and component availability. Some of the most crucial of these integer programming problems are NP-hard for the global optimum. Therefore, real-world applications heavily rely on heuristics and meta-heuristics to find good solutions. With recent developments in quantum meta-heuristic methods and promising results in experimental quantum computing systems, quantum computing is rapidly becoming more and more relevant for complex real-world combinatorial optimization tasks. This thesis is about applications of quantum combinatorial optimization algorithms in classical computer engineering problems. These include novel quantum computing techniques that respect the constraints of state-of-the-art experimental quantum systems. This thesis includes five projects. FASTER QUANTUM CONCENTRATION VIA GROVER'S SEARCH:One of the most important challenges in information networks is to gather data from a larger set of nodes to a smaller set of nodes. This can be done via the use of a concentrator architecture in the connection topology. This chapter is a proof-of-concept that demonstrates a quantum-based controller in large interconnection networks can asymptotically perform this task faster. We specifically present quantum algorithms for routing concentration assignments on full-capacity fat-and-slim concentrators, bounded fat-and-slim concentrators, and regular fat-and-slim concentrators. Classically, the concentration assignment takes O(n) time on all these concentrators, where n is the number of inputs. Powered by Grover's quantum search algorithm, our algorithms take O(√(nc) ln(c)) time, where c is the capacity of the concentrator. Thus, our quantum algorithms are asymptotically faster than their classical counterparts when (c ln^2(c))=o(n). In general, c = n^μ satisfies (c ln^2(c))=o(n), implying a time complexity of O(n^(0.5(1+ μ )) ln (n)), for any μ, 0 < μ < 1. QUANTUM ADVERSARIAL LEARNING IN EMULATION OF MONTE-CARLO METHODS FOR MAX-CUT APPROXIMATION: QAOA IS NOT OPTIMAL:One of the leading candidates for near-term quantum advantage is the class of Variational Quantum Algorithms. However, these algorithms suffer from classical difficulty in optimizing the variational parameters as the number of parameters increases. Therefore, it is important to understand the expressibility and power of various ansätze to produce target states and distributions. To this end, we apply notions of emulation to Variational Quantum Annealing and the Quantum Approximate Optimization Algorithm (QAOA) to show that variational annealing schedules with equivalent numbers of parameters outperform QAOA. Our Variational Quantum Annealing schedule is based on a novel polynomial parameterization that can be optimized in a similar gradient-free way as QAOA, using the same physical ingredients. In order to compare the performance of ansätze types, we have developed statistical notions of Monte-Carlo methods. Monte-Carlo methods are computer programs that generate random variables that approximate a target number that is computationally hard to calculate exactly. While the most well-known Monte-Carlo method is Monte-Carlo integration (e.g., Diffusion Monte-Carlo or path-integral quantum Monte-Carlo), QAOA is itself a Monte-Carlo method that finds good solutions to NP-complete problems such as Max-cut. We apply these statistical Monte-Carlo notions to further elucidate the theoretical framework around these quantum algorithms. SCHEDULING JOBS IN A SHARED HIGH-PERFORMANCE COMPUTER WITH A NISQ COMPUTER:Several quantum approximation algorithms for NP-hard optimization problems have been described in the literature. The properties of quantum approximation algorithms have been well-explored for optimization problems of Ising type with 2-local Hamiltonians. A wide range of optimization problems can be mapped to Ising problems. However, the mapping overhead of many problem instances puts them out of the reach of Noisy Intermediate-scale Quantum (NISQ) devices. In this chapter, we develop a way of mapping constrained optimization problems to higher-order spin interactions to put a larger set of problem instances within reach of spin interaction devices with potential NISQ applications. We demonstrate the growth in the practicable set of problem instances by comparing the resource requirements as a function of coupling. As an example, we have demonstrated our techniques on the problem of scheduling jobs in a high-performance computer queue with limited memory and CPUs. PROTEIN STRUCTURES WITH OSCILLATING QPACKER:A significant challenge in designing proteins for therapeutic purposes is determining the structure of a protein to find the sidechain identities given a protein backbone. This problem can be easily and efficiently encoded as a quadratic binary optimization problem. There has been a significant effort to find ways to solve these problems in the field of quantum information, both exactly and approximately. An important initiative has applied experimental quantum annealing platforms to solve this problem and got promising results. This project is about optimizing the annealing schedule for the sidechain identity problem, inspired by cutting-edge developments in the algorithmic theory of quantum annealing. ON THE COMPLEXITY OF GENERALIZED DISCRETE LOGARITHM PROBLEM:The Generalized Discrete Logarithm Problem (GDLP) is an extension of the Discrete Logarithm Problem where the goal is to find x∈ℤ_s such that g^x mod s=y for a given g,y∈ℤ_s. The generalized discrete logarithm is similar, but instead of a single base element, it uses a number of base elements that do not necessarily commute. In this chapter, we prove that GDLP is NP-hard for symmetric groups. The lower-bound complexity of GDLP has been an open question since GDLP was defined in 2008 until our proof. Furthermore, we prove that GDLP remains NP-hard even when the base elements are permutations of at most three elements. Lastly, we discuss the implications and possible implications of our proofs in classical and quantum complexity theory.Item Optimization Problems in Quantum Machine Learning(2023) You, Xuchen; Wu, Xiaodi; Computer Science; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)The variational algorithm is a paradigm for designing quantum procedures implementable on noisy intermediate-scale quantum (NISQ) machines. It is viewed as a promising candidate for demonstrating practical quantum advantage. In this dissertation, we look into the optimization aspect of the variational quantum algorithms as an attempt to answer when and why a variational quantum algorithm works. We mainly focus on two instantiations of the family of variational algorithms, the Variational Quantum Eigensolvers (VQEs) and the Quantum Neural Networks (QNNs). We first established that, for almost all QNN architecture designs, there exist hard problem instances leading to an optimization landscape swarmed by spurious local minima provided that the QNN is under-parameterized. This observation rules out the possibility of a universal good QNN design achieving exponential advantage against the classical neural networks on any dataset and calls for instance-dependent designs for variational circuits. We then show that VQE training converges linearly when the number of parameters exceeds an over-parameterization threshold. By tying the threshold to instance-dependent quantities, we developed variants of VQE algorithms that allow the training and testing of shallower variational circuits, as depths are usually the implementation bottlenecks on NISQ machines. For QNNs, by looking into its convergence, we show that the dynamics of QNN training are different from the dynamics of any kernel regression, therefore ruling out the popular conjecture that over-parameterized QNNs are equivalent to certain versions of neural tangent kernels like their classical counterparts. As a practical implication, our analysis showcases the measurement design as a way to accelerate the convergence of QNNs. At the end of this dissertation, we consider the classical problem of optimization with partial information, the Multi-arm Bandits (MABs). We show that, when enhanced with quantum access to the arms, there is a quadratic speed-up against the classical algorithms, which can serve as the building block for quantum reinforcement learning algorithms.Item MODEL-BASED SYSTEMS ENGINEERING SIMULATION FRAMEWORK FOR ROBOT GRASPING(2021) Menaka Sekar, Praveen Kumar; Baras, John S; Systems Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Constant rise in industrial usage of robots for commercial applications has led to the need for rapid, efficient, and reliable robotic system development processes. Integration of tools from various disciplines to perform design space exploration,taking into consideration the stakeholder and system requirements, is one major step in regards to this. In this thesis, we apply Model-Based Systems Engineering (MBSE) principles to a simple pick and place task. We do this by integrating Cameo Systems Modeling Language (SysML) tool, CoppeliaSim robot simulator, and Gurobi Optimizer to facilitate and accelerate the design process for a robot grasping system. A simulation based Verification & Validation approach supports design space exploration to obtain optimal design solutions, thereby leading to successful and profitable deployment and operation.Item Fantastic Sources Of Tumor Heterogeneity And How To Characterize Them(2021) Patkar, Sushant A; Ruppin, Eytan; Computer Science; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Cancer constantly evolves to evade the host immune system and resist different treatments. As a consequence, we see a wide range of inter and intra-tumor heterogeneity. In this PhD thesis, we present a collection of computational methods that characterize this heterogeneity from diverse perspectives. First, we developed computational frameworks for predicting functional re-wiring events in cancer and imputing the functional effects of protein-protein interactions given genome-wide transcriptomics and genetic perturbation data. Second, we developed a computational framework to characterize intra-tumor genetic heterogeneity in melanoma from bulk sequencing data and study its effects on the host immune response and patient survival independently of the overall mutation burden. Third, we analyzed publicly available genome-wide copy number, expression and methylation data of distinct cancer types and their normal tissues of origin to systematically uncover factors driving the acquisition of cancer type-specific chromosomal aneuploidies. Lastly, we developed a new computational tool: CODEFACS (COnfident Deconvolution For All Cell Subsets) to dissect the cellular heterogeneity of each patient’s tumor microenvironment (TME) from bulk RNA sequencing data, and LIRICS (LIgand Receptor Interactions between Cell Subsets): a supporting statistical framework to discover clinically relevant cellular immune crosstalk. Taken together, the methods presented in this thesis offer a way to study tumor heterogeneity in large patient cohorts using widely available bulk sequencing data and obtain new insights on tumor progression.Item Stabilizing Column Generation via Dual Optimal Inequalities with Applications in Logistics and Robotics(2020) Haghani, Naveed; Balan, Radu; Applied Mathematics and Scientific Computation; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)This work addresses the challenge of stabilizing column generation (CG) via dual optimal inequalities (DOI). We present two novel classes of DOI for the general context of set cover problems. We refer to these as Smooth DOI (S-DOI) and Flexible DOI (F-DOI). S-DOI can be interpreted as allowing for the undercovering of items at the cost of overcovering others and incurring an objective penalty. SDOI leverage the fact that dual values associated with items should change smoothly over space. F-DOI can be interpreted as offering primal objective rewards for the overcovering of items. We combine these DOI to produce a joint class of DOI called Smooth-Flexible DOI (SF-DOI). We apply these DOI to three classical problems in logistics and operations research: the Single Source Capacitated Facility Location Problem, the Capacitated p-Median Problem, and the Capacitated Vehicle Routing Problem. We prove that these DOI are valid and are guaranteed to not alter the optimal solution of CG. We also present techniques for their use in the case of solvingCG with relaxed column restrictions. This work also introduces a CG approach to Multi-Robot Routing (MRR). MRR considers the problem of routing a fleet of robots in a warehouse to collectively complete a set of tasks while prohibiting collisions. We present two distinct formulations that tackle unique problem variants. The first we model as a set packing problem, while the second we model as a set cover problem. We show that the pricing problem for both approaches amounts to an elementary resource constrained shortest path problem (ERCSPP); an NP-hard problem commonly studied in other CG problem contexts. We present an efficient implementation of our CG approach that radically reduces the state size of the ERCSPP. Finally, we present a novel heuristic algorithm for solving the ERCSPP and offer probabilistic guarantees forits likelihood to deliver the optimal solution.Item Alternating Optimization: Constrained Problems, Adversarial Networks, and Robust Models(2019) Xu, Zheng; Goldstein, Tom; Computer Science; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Data-driven machine learning methods have achieved impressive performance for many industrial applications and academic tasks. Machine learning methods usually have two stages: training a model from large-scale samples, and inference on new samples after the model is deployed. The training of modern models relies on solving difficult optimization problems that involve nonconvex, nondifferentiable objective functions and constraints, which is sometimes slow and often requires expertise to tune hyperparameters. While inference is much faster than training, it is often not fast enough for real-time applications.We focus on machine learning problems that can be formulated as a minimax problem in training, and study alternating optimization methods served as fast, scalable, stable and automated solvers. First, we focus on the alternating direction method of multipliers (ADMM) for constrained problem in classical convex and nonconvex optimization. Some popular machine learning applications including sparse and low-rank models, regularized linear models, total variation image processing, semidefinite programming, and consensus distributed computing. We propose adaptive ADMM (AADMM), which is a fully automated solver achieving fast practical convergence by adapting the only free parameter in ADMM. We further automate several variants of ADMM (relaxed ADMM, multi-block ADMM and consensus ADMM), and prove convergence rate guarantees that are widely applicable to variants of ADMM with changing parameters. We release the fast implementation for more than ten applications and validate the efficiency with several benchmark datasets for each application. Second, we focus on the minimax problem of generative adversarial networks (GAN). We apply prediction steps to stabilize stochastic alternating methods for the training of GANs, and demonstrate advantages of GAN-based losses for image processing tasks. We also propose GAN-based knowledge distillation methods to train small neural networks for inference acceleration, and empirically study the trade-off between acceleration and accuracy.Third, we present preliminary results on adversarial training for robust models. We study fast algorithms for the attack and defense for universal perturbations, and then explore network architectures to boost robustness.Item Matching Algorithm Design in E-Commerce: Harnessing the Power of Machine Learning via Stochastic Optimization(2019) Xu, Pan; Dickerson, John; Srinivasan, Aravind; Computer Science; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Internet-based matching markets have gained great attention during the last decade, such as Internet advertising (matching keywords and advertisers), ridesharing platforms (pairing riders and drivers), crowdsourcing markets (assigning tasks to workers), online dating (pairing romantically attracted partners), etc. A fundamental challenge is the presence of \emph{uncertainty}, which manifests in the following two ways. The first is on the arrival of agents in the system, e.g., \emph{drivers} and \emph{riders} in ridesharing services, \emph{keywords} in the Internet advertising, and \emph{online workers} in crowdsourcing markets. The second is on the outcome of interaction. For example, two users may \emph{like} or \emph{dislike} each other after a dating arranged by a match-making firm, a user may \emph{click} or \emph{not click} the link of an advertisement shown by an Ad company, to name a few. We are now living in an era of big data, fortunately. Thus, by applying powerful machine learning techniques to huge volumes of historical data, we can often get very accurate estimates of the uncertainty in the system as described above. Given this, the question then is as follows: \emph{How can we exploit estimates for our benefits as a matching-policy designer}? This dissertation aims to address this question. We have built an AI toolbox, which takes as input the estimates over uncertainty in the system, appropriate objectives (e.g., maximization of the total profit, maximization of fairness, etc.), and outputs a matching policy which works well both theoretically and experimentally on those pre-specified targets. The key ingredients are two matching models: stochastic matching and online matching. We have made several foundational algorithmic progress for these two models. Additionally, we have successfully utilized these two models to harness estimates from powerful machine learning algorithms, and designed improved matching policies for various real matching markets including ridesharing, crowdsourcing, and online recommendation applications.
- «
- 1 (current)
- 2
- 3
- »