Computer Science Theses and Dissertations
Permanent URI for this collectionhttp://hdl.handle.net/1903/2756
Browse
4 results
Search Results
Item Exact and Heuristic Methods for Emerging Vehicle Routing Problems(2022) Oden, Eric John; Golden, Bruce; Raghavan, S.; Applied Mathematics and Scientific Computation; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)The rise of global supply chains and e-commerce in recent decades have intensified the relevance of the transportation industry to both the individual and the economy. With rising consumer expectations and slim profit margins, the various sectors within the transportation industry rely on the development of carefully designed routes to remain competitive. Despite the wealth of research on route design, and the responsiveness of the research community to practical considerations, there remain gaps between the work done in practice and that appearing in the literature. Correspondingly, the work in this dissertation is directly in response to conversations had with contacts from real-world companies within the transportation domain. We consider problems presented, verbally, by companies representing three distinct segments of the industry: freight routing, last-mile delivery, and on-demand passenger transport. Each problem is centered around an innovative strategy with the potential to dramatically disrupt its corresponding domain. First, we consider the Shared Truckload (STL) freight shipping model, an alternative to the dominant Less-than-Truckload (LTL) model. Both models pool shipments from multiple customers into a single trailer, but, in the latter, consolidation is facilitated by a hub-and-spoke routing network, whereas, in the the former, freight moves directly from origin to destination. This strategy minimizes travel times and the risk of damage. We then investigate a novel strategy to facilitate last-mile, last-minute delivery, through coordinating a fleet of trucks and a fleet of smaller vehicles, referred to as shuttles. In order to accommodate requests which come in after trucks have been dispatched, shuttles are allowed to pick up packages from a depot and intercept trucks along their routes. This strategy can enable a shipper to make highly competitive service guarantees. Finally, we consider the emerging field of Urban Air Mobility (UAM), a vision of air taxis conveying passengers at lower altitudes throughout urban areas as an efficient alternative to gridlock traffic. In particular, we consider a UAM service company in the early stages of its development, where the chief goal is to maximize market share. These innovations represent significant deviations from the status quo in their respective fields, and, thus, the existing research for each is slim, if existent. Therefore, we introduce precise mathematical formulations of each of the problems to the research community. We then develop both exact and heuristic approaches to solve the problems, and carry out extensive computational studies comparing the solution methodologies. Furthermore, for each of the problems, we offer a sensitivity analysis and managerial insights. Among our contributions are original algorithms based on solving a set-partitioning formulations via column generation, a highly successful paradigm for solving large linear programs. Among the advantages of this approach is the ability to include highly general route costs and constraints. We illustrate this expressiveness by demonstrating its application to each of the three highly distinct problems we consider.Item Hierarchical Goal Networks: Formalisms and Algorithms for Planning and Acting(2015) Shivashankar, Vikas; Nau, Dana S; Computer Science; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)In real-world applications of AI and automation such as in robotics, computer game playing and web-services, agents need to make decisions in unstructured environments that are open-world, dynamic and partially observable. In the AI and Robotics research communities in particular, there is much interest in equipping robots to operate with minimal human intervention in diverse scenarios such as in manufacturing plants, homes, hospitals, etc. Enabling agents to operate in these environments requires advanced planning and acting capabilities, some of which are not well supported by the current state of the art automated planning formalisms and algorithms. To address this problem, in my thesis I propose a new planning formalism that addresses some of the inadequacies in current planning frameworks, and a suite of planning and acting algorithms that operate under this planning framework. The main contributions of this thesis are: - Hierarchical Goal Network (HGN) Planning Formalism. This planning formalism combines aspects (and therefore harnesses advantages) of Classical Planning and Hierarchical Task Network (HTN) Planning, two of the most prominent planning formalisms currently in use. In particular, HGN planning algorithms, while retaining the efficiency and scalability advantages of HTNs, also allows incorporation of heuristics and other reasoning techniques from Classical Planning. - Planning Algorithms. Goal Decomposition Planner (GDP) and the Goal Decomposition with Landmarks (GoDeL) planner are two HGN planning algorithms that combines hierarchical decomposition with classical planning heuristics to outperform state-of-the-art HTN planners like SHOP and SHOP2. - Integration with Robotics. The Combined HGN and Motion Planning (CHaMP) algorithm integrates GoDeL with low-level motion and manipulation planning algorithms in Robotics to generate plans directly executable by robots. Given the need for autonomous agents to operate in open, dynamic and unstructured environments and the obvious need for high-level deliberation capabilities to enable intelligent behavior, the planning-and-acting systems that are developed as part of this thesis may provide unique insights into ways to realize these systems in the real world.Item Integer Programming-Based Heuristics for Vehicle Routing Problems(2010) Gulczynski, Damon John; Golden, Bruce; Applied Mathematics and Scientific Computation; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)The vehicle routing problem (VRP) has been an active field of study by operations researchers for over 50 years. Many practical applications have been presented in the literature, and many solution techniques have been developed. We discuss, develop, and computationally test integer programming-based heuristics for several variants of the standard VRP. We use integer programming to model the split delivery VRP with minimum delivery amounts, the multi-depot split delivery VRP, the period VRP, the standard VRP, and the multi-depot VRP. We apply our heuristics to benchmark problems from the literature and generate many new problems with high-quality, visually-estimated solutions. Our heuristics produce high-quality solutions in a reasonable amount of computer time. Overall, our new IP-based heuristics are very competitive with the best methods found in the VRP literature to date.Item Parallel and Serial Algorithms for Vehicle Routing Problems(2008) Groer, Christopher Sebastian; Golden, Bruce; Applied Mathematics and Scientific Computation; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)The vehicle routing problem (VRP) is a widely studied combinatorial optimization problem that has many applications. Due to its intrinsic difficulty and the size of problems encountered in practice, most solution methods for the VRP are heuristic in nature and lead to high quality, yet probably not optimal solutions. When one considers the additional constraints that can be encountered in practice, the need for high quality heuristic methods is clear. We present two new variations of the VRP suggested to us by industry contacts, the Consistent VRP and the Balanced Billing Cycle VRP. We develop solution algorithms that incorporate heuristic methods as well as integer programming. Additionally, we develop a highly effective cooperative parallel algorithm for the classical VRP that generates new best solutions to a number of well-studied benchmark instances. We present extensive computational results and describe the C/C++ library that we developed to solve these vehicle routing problems. We describe the features and design philosophy behind this library and discuss how the framework can be used to implement additional heuristic algorithms and incorporate additional constraints.