Center for Advanced Study of Language Research Works

Permanent URI for this collectionhttp://hdl.handle.net/1903/11610

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Semantically-Informed Syntactic Machine Translation: A Tree-Grafting Approach
    (2010-10) Baker, Kathryn; Bloodgood, Michael; Callison-Burch, Chris; Dorr, Bonnie; Filardo, Nathaniel; Levin, Lori; Miller, Scott; Piatko, Christine
    We describe a unified and coherent syntactic framework for supporting a semantically-informed syntactic approach to statistical machine translation. Semantically enriched syntactic tags assigned to the target-language training texts improved translation quality. The resulting system significantly outperformed a linguistically naive baseline model (Hiero), and reached the highest scores yet reported on the NIST 2009 Urdu-English translation task. This finding supports the hypothesis (posed by many researchers in the MT community, e.g., in DARPA GALE) that both syntactic and semantic information are critical for improving translation quality—and further demonstrates that large gains can be achieved for low-resource languages with different word order than English.
  • Thumbnail Image
    Item
    Statistical Modality Tagging from Rule-based Annotations and Crowdsourcing
    (Association for Computational Linguistics, 2012-07-13) Prabhakaran, Vinodkumar; Bloodgood, Michael; Diab, Mona; Dorr, Bonnie; Levin, Lori; Piatko, Christine; Rambow, Owen; Van Durme, Benjamin
    We explore training an automatic modality tagger. Modality is the attitude that a speaker might have toward an event or state. One of the main hurdles for training a linguistic tagger is gathering training data. This is particularly problematic for training a tagger for modality because modality triggers are sparse for the overwhelming majority of sentences. We investigate an approach to automatically training a modality tagger where we first gathered sentences based on a high-recall simple rule-based modality tagger and then provided these sentences to Mechanical Turk annotators for further annotation. We used the resulting set of training data to train a precise modality tagger using a multi-class SVM that delivers good performance.