Mathematics Theses and Dissertations

Permanent URI for this collectionhttp://hdl.handle.net/1903/2793

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Topics in Harmonic Analysis, Sparse Representations, and Data Analysis
    (2018) Li, Weilin; Benedetto, John J; Czaja, Wojciech; Mathematics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Classical harmonic analysis has traditionally focused on linear and invertible transformations. Motivated by modern applications, there is a growing interest in non-linear analysis and synthesis operators. This thesis encompasses applications of computational harmonic analysis, with a strong emphasis on time-frequency methods, to modern problems arising in deep learning, data analysis, imaging, and signal processing. The first focus of this thesis deals with scattering transforms, which are particular realizations of convolutional neural networks. While the latter uses trained convolution kernels, scattering transforms use fixed ones, and this simplification allows mathematicians to develop a model of deep learning. Mallat originally introduced a wavelet scattering transform, but we study a complementary Fourier based version. We prove that the Fourier scattering transform enjoys properties that make it an effective feature extractor for classification, and we also construct a rotationally invariant modification of this transform. We provide experimental evidence that shows its effectiveness at representing complicated spectral data. The second focus of this thesis pertains to the mathematical foundations of super-resolution, which is concerned with the recovery of fine details from low-resolution observations. This imaging model can be mathematically formulated as an ill-posed inverse problem in the space of bounded complex measures. While the current theory primarily deals with the recovery of discrete measures with minimum separation greater than the Rayleigh length, we present alternative approaches. One direction exploits Beurling's results on minimal extrapolation to obtain a general theory that is pertinent to a wide class of measures, including those with geometric structure. Another approach is information theoretic and studies the min-max error for robust super-resolution of discrete measures below the Rayleigh length.
  • Item
    Feature extraction in image processing and deep learning
    (2018) Li, Yiran; Czaja, Wojciech; Applied Mathematics and Scientific Computation; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    This thesis develops theoretical analysis of the approximation properties of neural networks, and algorithms to extract useful features of images in fields of deep learning, quantum energy regression and cancer image analysis. The separate applications are connected by using representation systems in harmonic analysis; we focus on deriving proper representations of data using Gabor transform in this thesis. A novel neural network with proven approximation properties dependent on its size is developed using Gabor system. In quantum energy regression, invariant representation of chemical molecules using electron densities is obtained based on the Gabor transform. Additionally, we dig into pooling functions, the feature extractor in deep neural networks, and develop a novel pooling strategy originated from the maximal function with stability property and stable performance. Anisotropic representation of data using the Shearlet transform is also explored in its ability to detect regions of interests of nuclei in cancer images.