Plant Science & Landscape Architecture Research Works
Permanent URI for this collectionhttp://hdl.handle.net/1903/1603
Browse
2 results
Search Results
Item Auxin regulates adventitious root formation in tomato cuttings(Springer Nature, 2019-10-21) Guan, Ling; Tayengwa, Reuben; Cheng, Zongming (Max); Peer, Wendy Ann; Murphy, Angus S.; Zhao, MizhenAdventitious root (AR) formation is a critical developmental process in cutting propagation for the horticultural industry. While auxin has been shown to regulate this process, the exact mechanism and details preceding AR formation remain unclear. Even though AR and lateral root (LR) formation share common developmental processes, there are exist some differences that need to be closely examined at the cytological level. Tomato stem cuttings, which readily form adventitious roots, represent the perfect system to study the influence of auxin on AR formation and to compare AR and LR organogenesis.Item Overexpression of AtAHL20 causes delayed flowering in Arabidopsis via repression of FT expression(Springer Nature, 2020-11-11) Tayengwa, Reuben; Sharma Koirala, Pushpa; Pierce, Courtney F.; Werner, Breanna E.; Neff, Michael M.The 29-member Arabidopsis AHL gene family is classified into three main classes based on nucleotide and protein sequence evolutionary differences. These differences include the presence or absence of introns, type and/or number of conserved AT-hook and PPC domains. AHL gene family members are divided into two phylogenetic clades, Clade-A and Clade-B. A majority of the 29 members remain functionally uncharacterized. Furthermore, the biological significance of the DNA and peptide sequence diversity, observed in the conserved motifs and domains found in the different AHL types, is a subject area that remains largely unexplored. Transgenic plants overexpressing AtAHL20 flowered later than the wild type under both short and long days. Transcript accumulation analyses showed that 35S:AtAHL20 plants contained reduced FT, TSF, AGL8 and SPL3 mRNA levels. Similarly, overexpression of AtAHL20’s orthologue in Camelina sativa, Arabidopsis’ closely related Brassicaceae family member species, conferred a late-flowering phenotype via suppression of CsFT expression. However, overexpression of an aberrant AtAHL20 gene harboring a missense mutation in the AT-hook domain’s highly conserved R-G-R core motif abolished the late-flowering phenotype. Data from targeted yeast-two-hybrid assays showed that AtAHL20 interacted with itself and several other Clade-A Type-I AHLs which have been previously implicated in flowering-time regulation: AtAHL19, AtAHL22 and AtAHL29. We showed via gain-of-function analysis that AtAHL20 is a negative regulator of FT expression, as well as other downstream flowering time regulating genes. A similar outcome in Camelina sativa transgenic plants overexpressing CsAHL20 suggest that this is a conserved function. Our results demonstrate that AtAHL20 acts as a photoperiod-independent negative regulator of transition to flowering.