Aerospace Engineering Theses and Dissertations

Permanent URI for this collectionhttp://hdl.handle.net/1903/2737

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Analysis of the Stochastic Stability and Asymptotically Stationary Statistics for a Class of Nonlinear Attitude Estimation Algorithms
    (2018) Galante, Joseph Marshall; Sanner, Robert M; Aerospace Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Attitude estimation algorithms are critical components of satellite control systems, aircraft autopilots, and other applications. Attitude estimation systems perform their task by fusing attitude and gyroscope measurements; however, such measurements are typically corrupted by random noise and gyroscopes may have significant bias. Variations of the extended Kalman filter are commonly used, but this technique relies on instantaneous linearization of the underlying nonlinear dynamics and global stability cannot be guaranteed. Nonlinear attitude observers with guaranteed global stability have been derived and experimentally demonstrated, but only for the deterministic setting where no stochastic effects are present. The first part of this thesis extends a deterministic nonlinear attitude estimator by introducing additional dynamics that allow learning variations of gyro bias as a function of operating temperature, a common source of bias variation in rate gyro readings. The remainder of the thesis formally addresses the problem of stochastic stability and asymptotic performance for this family of estimators when the measurements contain random noise. Analysis tools from stochastic differential equation theory and stochastic Lyapunov analysis are used together to demonstrate convergence of the filter states to a stationary distribution, and to bound the associated steady-state statistics as a function of filter gains and sensor parameters. In many cases these bounds are conservative, but solutions have been found for the associated stationary Fokker-Planck PDEs for two cases. When only the gyro measurement contains noise, the attitude estimation errors are shown to converge to a bipolar Bingham distribution. When the gyro measurement is further assumed to have constant bias, the estimation errors are shown to converge to a joint bipolar Bingham and multivariate Gaussian distribution. Knowledge of the stationary distributions allow for exact computation of steady-state statistics. Further, the analysis suggests a method for modeling a continuous quaternion noise process with specified statistics on SO(3); this model is used for analyzing estimator performance when both the gyro and the attitude measurements contain noise. Bounds and exact predictions for the different noise models are validated using a high fidelity numerical integration method for nonlinear stochastic differential equations.
  • Thumbnail Image
    Item
    A Continuous-Time Nonlinear Observer for Estimating Structure from Motion from Omnidirectional Optic Flow
    (2010) Conroy, Joseph Kim; Humbert, James S.; Pines, Darryll J.; Aerospace Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Various insect species utilize certain types of self-motion to perceive structure in their local environment, a process known as active vision. This dissertation presents the development of a continuous-time formulated observer for estimating structure from motion that emulates the biological phenomenon of active vision. In an attempt to emulate the wide-field of view of compound eyes and neurophysiology of insects, the observer utilizes an omni-directional optic flow field. Exponential stability of the observer is assured provided the persistency of excitation condition is met. Persistency of excitation is assured by altering the direction of motion sufficiently quickly. An equal convergence rate on the entire viewable area can be achieved by executing certain prototypical maneuvers. Practical implementation of the observer is accomplished both in simulation and via an actual flying quadrotor testbed vehicle. Furthermore, this dissertation presents the vehicular implementation of a complimentary navigation methodology known as wide-field integration of the optic flow field. The implementation of the developed insect-inspired navigation methodologies on physical testbed vehicles utilized in this research required the development of many subsystems that comprise a control and navigation suite, including avionics development and state sensing, model development via system identification, feedback controller design, and state estimation strategies. These requisite subsystems and their development are discussed.