Aerospace Engineering Theses and Dissertations

Permanent URI for this collectionhttp://hdl.handle.net/1903/2737

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    A Time Parallel Approach to Numerical Simulation of Asymptotically Stable Dynamical Systems with Application to CFD Models of Helicopter Rotors
    (2023) Silbaugh, Benjamin Scott; Baeder, James D; Aerospace Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Modern High Performance Computing (HPC) machines are distributed memoryclusters, consisting of multi-core compute nodes. Engineering simulation and analysis tools must employ efficient parallel algorithms in order to fully utilize the compute capability of modern HPC machines. The trend in Computational Fluid Dynamcis (CFD) has been to construct parallel solution algorithms based on some form of spatial domain decomposition. This approach has been shown to be a success for many practical applications. However, as one attempts to utlize more compute cores, limitations in strong scalability are inevitably reached due to a diminishing compute workload per compute core and either fixed or increasing communication cost. Furthermore, spatial domain decomposition approaches cannot be easily applied to mid-fidelity structural dynamics or rigid body dynamics models. A significant majority of industrial fluid and structural dynamic models utilize some form of time marching. Thus, if the domain decomposition strategy may be extended to include the temporal dimension, additional opportunity for increased parallelism may be realized. A new form of periodic multiple shooting is proposed that ismatrix-free and may be applied to high-fidelity multiphysics models or other high dimensional systems. The proposed methodology is formulated entirely in the time domain. Therefore, existing time-domain simulation tools may utilize the proposed approach to achieve a high degree of distributed memory parallelism without requiring any reformulation. Furthermore, the proposed methodology may be combined with conventional space domain decomposition techniques and other forms of data parallelism to achieve maximal performance on modern HPC architectures. The proposed algorithm retains the iterative shoot-correct approach of conventational periodic shooting methods. However, the correction stage is formulated using a hierarchical evaluation strategy combined with an Arnoldi subspace approximation to eliminate the need for explicit formulation of Jacobian matricies. The local convergence of the proposed method is formally proven for the case of an asyptotically stable dynamical system. The proposed method is numerically tested for a 2D limit cycle problem, a rigid blade helicoper rotor model with quasi-steady aerodynamics and autopilot trim, and an OVERSET CFD model of a helicopter rotor with prescribed elastic blade motions. The method is observed to be convergent in all test cases and found to exhibit good scalability. The proposed periodic multiple shooting method is a practical means of reducingtime-to-solution for numerical simulations of asymptotically stable periodic systems on distributed memory parallel computers. Furthermore, the proposed method may be used to enhance the parallel scalability of OVERSET CFD models of helicopter rotors in steady periodic flight.
  • Thumbnail Image
    Item
    A Time Parallel Approach to Numerical Simulation of Asymptotically Stable Dynamical Systems with Application to CFD Models of Helicopter Rotors
    (2023) Silbaugh, Benjamin Scott; Baeder, James; Aerospace Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Modern High Performance Computing (HPC) machines are distributed memoryclusters, consisting of multi-core compute nodes. Engineering simulation and analysis tools must employ efficient parallel algorithms in order to fully utilize the compute capability of modern HPC machines. The trend in Computational Fluid Dynamcis (CFD) has been to construct parallel solution algorithms based on some form of spatial domain decomposition. This approach has been shown to be a success for many practical applications. However, as one attempts to utlize more compute cores, limitations in strong scalability are inevitably reached due to a diminishing compute workload per compute core and either fixed or increasing communication cost. Furthermore, spatial domain decomposition approaches cannot be easily applied to mid-fidelity structural dynamics or rigid body dynamics models. A significant majority of industrial fluid and structural dynamic models utilize some form of time marching. Thus, if the domain decomposition strategy may be extended to include the temporal dimension, additional opportunity for increased parallelism may be realized. A new form of periodic multiple shooting is proposed that ismatrix-free and may be applied to high-fidelity multiphysics models or other high dimensional systems. The proposed methodology is formulated entirely in the time domain. Therefore, existing time-domain simulation tools may utilize the proposed approach to achieve a high degree of distributed memory parallelism without requiring any reformulation. Furthermore, the proposed methodology may be combined with conventional space domain decomposition techniques and other forms of data parallelism to achieve maximal performance on modern HPC architectures. The proposed algorithm retains the iterative shoot-correct approach of conventational periodic shooting methods. However, the correction stage is formulated using a hierarchical evaluation strategy combined with an Arnoldi subspace approximation to eliminate the need for explicit formulation of Jacobian matricies. The local convergence of the proposed method is formally proven for the case of an asyptotically stable dynamical system. The proposed method is numerically tested for a 2D limit cycle problem, a rigid blade helicoper rotor model with quasi-steady aerodynamics and autopilot trim, and an OVERSET CFD model of a helicopter rotor with prescribed elastic blade motions. The method is observed to be convergent in all test cases and found to exhibit good scalability. The proposed periodic multiple shooting method is a practical means of reducingtime-to-solution for numerical simulations of asymptotically stable periodic systems on distributed memory parallel computers. Furthermore, the proposed method may be used to enhance the parallel scalability of OVERSET CFD models of helicopter rotors in steady periodic flight.
  • Thumbnail Image
    Item
    A Scalable Time-Parallel Solution of Periodic Dynamics for Three-Dimensional Rotorcraft Aeromechanics
    (2022) Patil, Mrinalgouda; Datta, Anubhav; Aerospace Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    The principal barrier of computational time for rotorcraft trim solution using high-fidelity three-dimensional (3D) structures on real rotor problems was overcome with parallel and scalable algorithms. These algorithms were devised by leveraging the modern supercomputer architecture. The resulting parallel X3D solver was used to investigate advanced coaxial rotors using a notional hingeless rotor test case, Metaltail. This investigation included rotor performance, blade airloads, vibratory hub loads, and three-dimensional stresses. The technical approach consisted of first studying existing algorithms for periodic rotor dynamics --- time marching, finite element in time (FET), and harmonic balance. The feasibility of these algorithms was studied for large-scale rotor structures, and drawbacks were identified. Modifications were then performed on the harmonic balance method to obtain a Modified Harmonic Balance (MHB) method. A parallel algorithm for skyline solver was devised on shared memory to obtain faster solutions to large linear system of equations. The MHB method was implemented on a hybrid distributed--shared memory architecture to allow for parallel computations of harmonics. These developed algorithms were then integrated into the X3D solver to obtain a new parallel X3D. The new parallel X3D was verified and validated in hover and forward flight conditions for both idealized and real rotor test cases. A total of four test cases were studied: 1) uniform beam, 2) Frank Harris rotor, 3) UH-60A-like Black Hawk rotor, and 4) NASA Tilt Rotor Aeroacoustic Model (TRAM). The predictions of tip displacements, airloads, and stress distributions from the MHB algorithm showed good agreement with the test data and time marching predictions. The key conclusion is that the new solver converges to the time marching solution 50-70 times faster and achieves a performance greater than 1 teraFLOPS. The new parallel X3D solver opened the opportunity for modeling advanced rotor configurations. In this work, the coaxial rotor was the selected configuration. Two open access models were developed; 1) a notional hingeless coaxial rotor, and 2) a notional articulated UH-60A-like coaxial rotor. The aerodynamics, structural dynamics, and trim modules of X3D were expanded for coaxial modeling. The coaxial aerodynamics was validated with hover performance data from the U.S. Army model test. The coaxial solver was then used to study rotor aeromechanics in forward flight. The analysis was performed at a low-speed transition flight for which qualitative data is available for the Sikorsky S-97 Raider aircraft for comparison. The UH-60A coaxial airloads showed good agreement with the S-97 data as the twists are likely similar. However, the Metaltail model showed dissimilarities, and the cause was investigated to be its high twist. Vibratory hub loads with advance ratio were studied, and the maximum vibration occurred at the transition flight speed ($\mu = 0.1 - 0.15$), which was consistent with the S-97 data. The effect of the inter-rotor phase was examined for the reduction of vibratory hub loads. Three-dimensional stresses and strains were predicted and visualized for the first time on lift offset coaxial rotors in the blade and the hub.