Aerospace Engineering Theses and Dissertations
Permanent URI for this collectionhttp://hdl.handle.net/1903/2737
Browse
Item Scalable Domain Decomposition for Parallel Solution of 3D Finite Element Multibody Rotorcraft Aeromechanics(2022) Lumba, Ravi Tyler; Datta, Anubhav; Aerospace Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)A specialized mesh partitioner is developed for large-scale multibody three-dimensional finite element models. This partitioner enables modern domain decomposition algorithms to be leveraged for the parallel solution of complex, multibody, three-dimensional finite element-based rotor structural dynamics problems. The partitioner works with any domain decomposition algorithm, but contains special features for FETI-DP, a state-of-the-art iterative substructuring algorithm. The algorithm was implemented into an aeroelastic rotor solver X3D, with several modifications to improve performance. The parallel solver was applied to two practical test cases: the NASA Tiltrotor Aeroacoustic Model (TRAM) and the NASA Rotor Optimization for the Advancement of Mars eXploration (ROAMX) rotor blade. The mesh partitioner was developed from two sets of requirements: one standard to any domain decomposition algorithm and one specific to the FETI-DP method. The main feature of the partitioner is the ability to robustly partition any multibody structure, but with several special features for rotary-wing structures. The NASA TRAM, a 1/4 scale V-22 model, was specially released by NASA as a challenge test case. This model contained four flexible parts, six joints, nearly twenty composite material decks, a fluid-structure interface, and trim control inputs. The solver performance was studied for three test problems of increasing complexity: 1) an elementary beam, 2) the isolated TRAM blade, and 3) the TRAM blade and hub assembly. A key conclusion is that the use of a skyline solver for the coarse problem eliminates the coarse problem scalability barrier. Overall, the principle barrier of computational time that prevented the use of high-fidelity three-dimensional structures in rotorcraft is thus resolved. The two selected cases provided a template for how 3D structures should be used in the future. A detailed aeromechanical analysis of the NASA TRAM rotor was conducted. The solver was validated against experimental results in hover. The stresses in the blade and hub components were examined, illustrating the unique benefit of 3D structures. The NASA ROAMX blade was the first rotor blade to our knowledge designed exclusively with 3D structures. The torsional stability, blade loads, blade deformations, and 3D stresses/strains were evaluated for multiple blade designs before the final selection. The aeroelastic behavior of this blade was studied in steady and unsteady hover. Inertial effects were found to dominate over aerodynamics on Mars. The rotor blade was found to have sufficient factor of safety and damping for all test conditions. Over 20 thousand cases were executed with detailed stresses/strains as means of downselection, demonstrating the efficiency and utility of the parallel solver, and providing a roadmap for its use in future designs.Item A Scalable Time-Parallel Solution of Periodic Dynamics for Three-Dimensional Rotorcraft Aeromechanics(2022) Patil, Mrinalgouda; Datta, Anubhav; Aerospace Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)The principal barrier of computational time for rotorcraft trim solution using high-fidelity three-dimensional (3D) structures on real rotor problems was overcome with parallel and scalable algorithms. These algorithms were devised by leveraging the modern supercomputer architecture. The resulting parallel X3D solver was used to investigate advanced coaxial rotors using a notional hingeless rotor test case, Metaltail. This investigation included rotor performance, blade airloads, vibratory hub loads, and three-dimensional stresses. The technical approach consisted of first studying existing algorithms for periodic rotor dynamics --- time marching, finite element in time (FET), and harmonic balance. The feasibility of these algorithms was studied for large-scale rotor structures, and drawbacks were identified. Modifications were then performed on the harmonic balance method to obtain a Modified Harmonic Balance (MHB) method. A parallel algorithm for skyline solver was devised on shared memory to obtain faster solutions to large linear system of equations. The MHB method was implemented on a hybrid distributed--shared memory architecture to allow for parallel computations of harmonics. These developed algorithms were then integrated into the X3D solver to obtain a new parallel X3D. The new parallel X3D was verified and validated in hover and forward flight conditions for both idealized and real rotor test cases. A total of four test cases were studied: 1) uniform beam, 2) Frank Harris rotor, 3) UH-60A-like Black Hawk rotor, and 4) NASA Tilt Rotor Aeroacoustic Model (TRAM). The predictions of tip displacements, airloads, and stress distributions from the MHB algorithm showed good agreement with the test data and time marching predictions. The key conclusion is that the new solver converges to the time marching solution 50-70 times faster and achieves a performance greater than 1 teraFLOPS. The new parallel X3D solver opened the opportunity for modeling advanced rotor configurations. In this work, the coaxial rotor was the selected configuration. Two open access models were developed; 1) a notional hingeless coaxial rotor, and 2) a notional articulated UH-60A-like coaxial rotor. The aerodynamics, structural dynamics, and trim modules of X3D were expanded for coaxial modeling. The coaxial aerodynamics was validated with hover performance data from the U.S. Army model test. The coaxial solver was then used to study rotor aeromechanics in forward flight. The analysis was performed at a low-speed transition flight for which qualitative data is available for the Sikorsky S-97 Raider aircraft for comparison. The UH-60A coaxial airloads showed good agreement with the S-97 data as the twists are likely similar. However, the Metaltail model showed dissimilarities, and the cause was investigated to be its high twist. Vibratory hub loads with advance ratio were studied, and the maximum vibration occurred at the transition flight speed ($\mu = 0.1 - 0.15$), which was consistent with the S-97 data. The effect of the inter-rotor phase was examined for the reduction of vibratory hub loads. Three-dimensional stresses and strains were predicted and visualized for the first time on lift offset coaxial rotors in the blade and the hub.