Kinesiology Research Works
Permanent URI for this collectionhttp://hdl.handle.net/1903/1635
Browse
Item The relationship between ciliary neurotrophic factor (CNTF) genotype and motor unit physiology: preliminary studies(Springer Nature, 2005-09-23) Conwit, Robin A; Ling, Shari; Roth, Stephen; Stashuk, Daniel; Hurley, Ben; Ferrell, Robert; Metter, E JeffreyCiliary neurotrophic factor (CNTF) is important for neuronal and muscle development, and genetic variation in the CNTF gene has been associated with muscle strength. The effect of CNTF on nerve development suggests that CNTF genotype may be associated with force production via its influence on motor unit size and firing patterns. The purpose of this study is to examine whether CNTF genotype differentially affects motor unit activation in the vastus medialis with increasing isometric force during knee extension. Sixty-nine healthy subjects were genotyped for the presence of the G and A (null) alleles in the CNTF gene (n = 57 G/G, 12 G/A). They were tested using a dynamometer during submaximal isometric knee extension contractions that were from 10–50% of their maximal strength. During the contractions, the vastus medialis was studied using surface and intramuscular electromyography with spiked triggered averaging to assess surface-detected motor unit potential (SMUP) area and mean firing rates (mFR) from identified motor units. CNTF genotyping was performed using standard PCR techniques from DNA obtained from leucocytes of whole blood samples. The CNTF G/A genotype was associated with smaller SMUP area motor units and lower mFR at higher force levels, and fewer but larger units at lower force levels than G/G homozygotes. The two groups used motor units with different size and activation characteristics with increasing force generation. While G/G subjects tended to utilize larger motor units with increasing force, G/A subjects showed relatively less increase in size by using relatively larger units at lower force levels. At higher force levels, G/A subjects were able to generate more force per motor unit size suggesting more efficient motor unit function with increasing muscle force. Differential motor unit responses were observed between CNTF genotypes at force levels utilized in daily activities.Item Physical Activity and Brain Function in Older Adults at Increased Risk for Alzheimer’s Disease(MDPI, 2013-01-14) Smith, J. Carson; Nielson, Kristy A.; Woodard, John L.; Seidenberg, Michael; Rao, Stephen M.Leisure-time physical activity (PA) and exercise training are known to help maintain cognitive function in healthy older adults. However, relatively little is known about the effects of PA on cognitive function or brain function in those at increased risk for Alzheimer’s disease through the presence of the apolipoproteinE epsilon4 (APOE-ε4) allele, diagnosis of mild cognitive impairment (MCI), or the presence of metabolic disease. Here, we examine the question of whether PA and exercise interventions may differentially impact cognitive trajectory, clinical outcomes, and brain structure and function among individuals at the greatest risk for AD. The literature suggests that the protective effects of PA on risk for future dementia appear to be larger in those at increased genetic risk for AD. Exercise training is also effective at helping to promote stable cognitive function in MCI patients, and greater cardiorespiratory fitness is associated with greater brain volume in early-stage AD patients. In APOE-ε4 allele carriers compared to non-carriers, greater levels of PA may be more effective in reducing amyloid burden and are associated with greater activation of semantic memory-related neural circuits. A greater research emphasis should be placed on randomized clinical trials for exercise, with clinical, behavioral, and neuroimaging outcomes in people at increased risk for AD.Item Does visual feedback during walking result in similar improvements in trunk control for young and older healthy adults?(Springer Nature, 2013-11-26) Anson, Eric; Rosenberg, Russell; Agada, Peter; Kiemel, Tim; Jeka, JohnMost current applications of visual feedback to improve postural control are limited to a fixed base of support and produce mixed results regarding improved postural control and transfer to functional tasks. Currently there are few options available to provide visual feedback regarding trunk motion while walking. We have developed a low cost platform to provide visual feedback of trunk motion during walking. Here we investigated whether augmented visual position feedback would reduce trunk movement variability in both young and older healthy adults. The subjects who participated were 10 young and 10 older adults. Subjects walked on a treadmill under conditions of visual position feedback and no feedback. The visual feedback consisted of anterior-posterior (AP) and medial-lateral (ML) position of the subject’s trunk during treadmill walking. Fourier transforms of the AP and ML trunk kinematics were used to calculate power spectral densities which were integrated as frequency bins “below the gait cycle” and “gait cycle and above” for analysis purposes. Visual feedback reduced movement power at very low frequencies for lumbar and neck translation but not trunk angle in both age groups. At very low frequencies of body movement, older adults had equivalent levels of movement variability with feedback as young adults without feedback. Lower variability was specific to translational (not angular) trunk movement. Visual feedback did not affect any of the measured lower extremity gait pattern characteristics of either group, suggesting that changes were not invoked by a different gait pattern. Reduced translational variability while walking on the treadmill reflects more precise control maintaining a central position on the treadmill. Such feedback may provide an important technique to augment rehabilitation to minimize body translation while walking. Individuals with poor balance during walking may benefit from this type of training to enhance path consistency during over-ground locomotion.Item Mitochondrial oxygen consumption deficits in skeletal muscle isolated from an Alzheimer’s disease-relevant murine model(Springer Nature, 2014-02-13) Schuh, Rosemary A; Jackson, Kathryn C; Schlappal, Anna E; Spangenburg, Espen E; Ward, Christopher W; Park, Ji H; Dugger, Natalie; Shi, Guo Li; Fishman, Paul SAge is considered a primary risk factor for neurodegenerative diseases including Alzheimer’s disease (AD). It is also now well understood that mitochondrial function declines with age. Mitochondrial deficits have been previously assessed in brain from both human autopsy tissue and disease-relevant transgenic mice. Recently it has been recognized that abnormalities of muscle may be an intrinsic aspect of AD and might contribute to the pathophysiology. However, deficits in mitochondrial function have yet to be clearly assessed in tissues outside the central nervous system (CNS). In the present study, we utilized a well-characterized AD-relevant transgenic mouse strain to assess mitochondrial respiratory deficits in both brain and muscle. In addition to mitochondrial function, we assessed levels of transgene-derived amyloid precursor protein (APP) in homogenates isolated from brain and muscle of these AD-relevant animals. We now demonstrate that skeletal muscles isolated from these animals have differential levels of mutant full-length APP depending on muscle type. Additionally, isolated muscle fibers from young transgenic mice (3 months) have significantly decreased maximal mitochondrial oxygen consumption capacity compared to non-transgenic, age-matched mice, with similar deficits to those previously described in brain. This is the first study to directly examine mitochondrial function in skeletal muscle from an AD-relevant transgenic murine model. As with brain, these deficits in muscle are an early event, occurring prior to appearance of amyloid plaques.Item Asymmetric Sensory Reweighting in Human Upright Stance(PLoS One, 2014-06-24) Logan, David; Kiemel, Tim; Jeka, John J.To investigate sensory reweighting as a fundamental property of sensor fusion during standing, we probed postural control with simultaneous rotations of the visual scene and surface of support. Nineteen subjects were presented with pseudo-random pitch rotations of visual scene and platform at the ankle to test for amplitude dependencies in the following conditions: low amplitude vision: high amplitude platform, low amplitude vision: low amplitude platform, and high amplitude vision: low amplitude platform. Gain and phase of frequency response functions (FRFs) to each stimulus were computed for two body sway angles and a single weighted EMG signal recorded from seven muscles. When platform stimulus amplitude was increased while visual stimulus amplitude remained constant, gain to vision increased, providing strong evidence for inter-modal reweighting between vision and somatosensation during standing. Intra-modal reweighting of vision was also observed as gains to vision decreased as visual stimulus amplitude increased. Such intra-modal and inter-modal amplitude dependent changes in gain were also observed in muscular activity. Gains of leg segment angle and muscular activity relative to the platform, on the other hand, showed only intra-modal reweighting. That is, changing platform motion amplitude altered the responses to both visual and support surface motion whereas changing visual scene motion amplitude did not significantly affect responses to support surface motion, indicating that the sensory integration scheme between somatosensation (at the support surface) and vision is asymmetric.Item Activation of the endoplasmic reticulum stress response in skeletal muscle of G93A*SOD1 amyotrophic lateral sclerosis mice(Frontiers, 2015-05-18) Chen, Dapeng; Wang, Yan; Chin, Eva R.Item The SH3 and cysteine-rich domain 3 (Stac3) gene is important to growth, fiber composition, and calcium release from the sarcoplasmic reticulum in postnatal skeletal muscle(Springer Nature, 2016-04-11) Cong, Xiaofei; Doering, Jonathan; Mazala, Davi A. G.; Chin, Eva R.; Grange, Robert W.; Jiang, HonglinThe SH3 and cysteine-rich domain 3 (Stac3) gene is specifically expressed in the skeletal muscle. Stac3 knockout mice die perinatally. In this study, we determined the potential role of Stac3 in postnatal skeletal muscle growth, fiber composition, and contraction by generating conditional Stac3 knockout mice. We disrupted the Stac3 gene in 4-week-old male mice using the Flp-FRT and tamoxifen-inducible Cre-loxP systems. RT-qPCR and western blotting analyses of the limb muscles of target mice indicated that nearly all Stac3 mRNA and more than 70 % of STAC3 protein were deleted 4 weeks after tamoxifen injection. Postnatal Stac3 deletion inhibited body and limb muscle mass gains. Histological staining and gene expression analyses revealed that postnatal Stac3 deletion decreased the size of myofibers and increased the percentage of myofibers containing centralized nuclei, with no effect on the total myofiber number. Grip strength and grip time tests indicated that postnatal Stac3 deletion decreased limb muscle strength in mice. Muscle contractile tests revealed that postnatal Stac3 deletion reduced electrostimulation-induced but not the ryanodine receptor agonist caffeine-induced maximal force output in the limb muscles. Calcium imaging analysis of single flexor digitorum brevis myofibers indicated that postnatal Stac3 deletion reduced electrostimulation- but not caffeine-induced calcium release from the sarcoplasmic reticulum. This study demonstrates that STAC3 is important to myofiber hypertrophy, myofiber-type composition, contraction, and excitation-induced calcium release from the sarcoplasmic reticulum in the postnatal skeletal muscle.Item Hippocampal and Cerebral Blood Flow after Exercise Cessation in Master Athletes(Frontiers, 2016-08-05) Alfini, Alfonso J.; Weiss, Lauren R.; Leitner, Brooks P.; Smith, Theresa J.; Hagberg, James M.; Smith, J. CarsonWhile endurance exercise training improves cerebrovascular health and has neurotrophic effects within the hippocampus, the effects of stopping this exercise on the brain remain unclear. Our aim was to measure the effects of 10 days of detraining on resting cerebral bloodflow (rCBF) in gray matter and the hippocampus in healthy and physically fit older adults. We hypothesized that rCBF would decrease in the hippocampus after a 10-day cessation of exercise training. Twelve master athletes, defined as older adults (age ≥ 50 years) with long-term endurance training histories (≥ 15 years), were recruited from local running clubs. After screening, eligible participants were asked to cease all training and vigorous physical activity for 10 consecutive days. Before and immediately after the exercise cessation period, rCBF was measured with perfusion-weighted MRI. A voxel-wise analysis was used in gray matter, and the hippocampus was selected a priori as a structurally defined region of interest (ROI), to detect rCBF changes overtime. Resting CBF significantly decreased in eight gray matter brain regions. These regions included: (L) inferior temporal gyrus, fusiform gyrus, inferior parietal lobule, (R) cerebellar tonsil, lingual gyrus, precuneus, and bilateral cerebellum (FEW p < 0.05). Additionally, rCBF within the left and right hippocampus significantly decreased after 10 days of no exercise training. These findings suggest that the cerebrovascular system, including the regulation of resting hippocampal blood flow, is responsive to short-term decreases in exercise training among master athletes. Cessation of exercise training among physically fit individuals may provide a novel method to assess the effects of acute exercise and exercise training on brain function in older adults.Item Using a System Identification Approach to Investigate Subtask Control during Human Locomotion(Frontiers, 2017-01-11) Logan, David; Kiemel, Tim; Jeka, John J.Here we apply a control theoretic view of movement to the behavior of human locomotion with the goal of using perturbations to learn about subtask control. Controlling one’s speed and maintaining upright posture are two critical subtasks, or underlying functions, of human locomotion. How the nervous system simultaneously controls these two subtasks was investigated in this study. Continuous visual and mechanical perturbations were applied concurrently to subjects (n=20) as probes to investigate these two subtasks during treadmill walking. Novel application of harmonic transfer function (HTF) analysis to human motor behavior was used, and these HTFs were converted to the time-domain based representation of phase-dependent impulse response functions (_IRFs). These _IRFs were used to identify the mapping from perturbation inputs to kinematic and electromyographic (EMG) outputs throughout the phases of the gait cycle. Mechanical perturbations caused an initial, passive change in trunk orientation and, at some phases of stimulus presentation, a corrective trunk EMG and orientation response. Visual perturbations elicited a trunk EMG response prior to a trunk orientation response, which was subsequently followed by an anterior-posterior displacement response. This finding supports the notion that there is a temporal hierarchy of functional subtasks during locomotion in which the control of upper-body posture precedes other subtasks. Moreover, the novel analysis we apply has the potential to probe a broad range of rhythmic behaviors to better understand their neural control.Item Calcium dysregulation, functional calpainopathy, and endoplasmic reticulum stress in sporadic inclusion body myositis(Springer Nature, 2017-03-22) Amici, David R.; Pinal-Fernandez, Iago; Mázala, Davi A. G.; Lloyd, Thomas E.; Corse, Andrea M.; Christopher-Stine, Lisa; Mammen, Andrew L.; Chin, Eva R.Sporadic inclusion body myositis (IBM) is the most common primary myopathy in the elderly, but its pathoetiology is still unclear. Perturbed myocellular calcium (Ca2+) homeostasis can exacerbate many of the factors proposed to mediate muscle degeneration in IBM, such as mitochondrial dysfunction, protein aggregation, and endoplasmic reticulum stress. Ca2+ dysregulation may plausibly be initiated in IBM by immune-mediated membrane damage and/or abnormally accumulating proteins, but no studies to date have investigated Ca2+ regulation in IBM patients. We first investigated protein expression via immunoblot in muscle biopsies from IBM, dermatomyositis, and non-myositis control patients, identifying several differentially expressed Ca2+-regulatory proteins in IBM. Next, we investigated the Ca2+-signaling transcriptome by RNA-seq, finding 54 of 183 (29.5%) genes from an unbiased list differentially expressed in IBM vs. controls. Using an established statistical approach to relate genes with causal transcription networks, Ca2+ abundance was considered a significant upstream regulator of observed whole-transcriptome changes. Post-hoc analyses of Ca2+-regulatory mRNA and protein data indicated a lower protein to transcript ratio in IBM vs. controls, which we hypothesized may relate to increased Ca2+-dependent proteolysis and decreased protein translation. Supporting this hypothesis, we observed robust (4-fold) elevation in the autolytic activation of a Ca2+-activated protease, calpain-1, as well as increased signaling for translational attenuation (eIF2α phosphorylation) downstream of the unfolded protein response. Finally, in IBM samples we observed mRNA and protein under-expression of calpain-3, the skeletal muscle-specific calpain, which broadly supports proper Ca2+ homeostasis. Together, these data provide novel insight into mechanisms by which intracellular Ca2+ regulation is perturbed in IBM and offer evidence of pathological downstream effects.Item Policing the Void: Recreation, Social Inclusion and the Baltimore Police Athletic League(Cogitatio, 2017-06-29) Bustad, Jacob J.; Andrews, David L.In this article, we explore the relationship between public recreation policy and planning and the transformation of urban governance in the context of the Police Athletic League centers in Baltimore, Maryland. In light of contemporary discussions of the role of youth programs for sport and physical activity within post-industrial cities, the origination, development, and eventual demise of Baltimore’s network of Police Activity League centers is an instructive, if disheartening, saga. It illustrates the social and political rationales mobilized in justifying recreation policy and programming, the framing of sport and physical activity as preventative measures towards crime and juvenile delinquency, and the precarity of such initiatives given the efficiency-driven orthodoxies of neoliberal urban entrepreneurialism (Harvey, 1989). This analysis emphasizes how the PAL centers were designed to ‘fill the void’ left by a declining system of public recreation, thereby providing an example of a recreation program as part of the “social problems industry” (Pitter & Andrews 1997).Item The Influence of Family Dog Ownership and Parental Perceived Built Environment Measures on Children’s Physical Activity within the Washington, DC Area(MDPI, 2017-11-16) Roberts, Jennifer D.; Rodkey, Lindsey; Grisham, Cortney; Ray, RashawnSedentary behavior and physical inactivity are significant contributors to youth obesity in the United States. Neighborhood dog walking is an outlet for physical activity (PA). Therefore, understanding the relationship between built environment, dog ownership, and youth PA is essential. This study examined the influence of dog ownership and parental built environment perceptions on children’s PA in the Washington, D.C. area. In 2014, questionnaires were mailed to 2000 parents to assess family dog ownership; children’s outdoor dog walking or playing; and parental perceived built environment measures. Chi-square analyses examined differences in parental perceived built environment measures between children with and without family dogs. The sample included 144 children (50% female; average-age 9.7 years; 56.3% White; 23.7% African-American; 10.4% Asian-American; 29.9% owned dog). Only 13% and 5.6% of the children walked or played outdoors with the dog daily, respectively. A significantly greater proportion (p-value < 0.05) of parents who owned dogs recognized and observed some home built environment measures (e.g., traffic speed on most streets is 30 mph or less) that were PA -promoting for their children. Findings suggest that dog ownership may provide more positive parental perceptions of the neighborhood built environment, which supports children’s outdoor PA through dog walking and playing.Item Examining the Influence of a New Light Rail Line on the Health of a Demographically Diverse and Understudied Population within the Washington, D.C. Metropolitan Area: A Protocol for a Natural Experiment Study(MDPI, 2018-02-13) Roberts, Jennifer D.; Hu, Ming; Saksvig, Brit Irene; Brachman, Micah L.; Durand, Casey P.Approximately two-thirds of adults and youth in Prince George’s County, Maryland, a suburb of Washington, D.C. are overweight or obese and less than half are achieving daily physical activity recommendations. Active transportation (AT), such as walking, biking or using public transportation (PT), is a strategic pathway to improving physical activity levels and thus reducing excess weight. Utilizing an expansion of the Washington, D.C. area transportation system with a new light rail line, the Purple Line Outcomes on Transportation (PLOT) Study will exam pre- and post-Purple Line PT use, AT behaviors and attitudes and physical activity among Prince George’s County adults and youth. The PLOT Study will take advantage of this natural experiment in an area enduring significant racial/ethnic and gender-based overweight or obesity and physical inactivity disparities. While similar natural experiments on AT have been conducted in other U.S. cities, those studies lacked diverse and representative samples. To effectively evaluate these physical activity outcomes among this population, efforts will be used to recruit African American and Latino populations, the first and second most common racial/ethnic groups in Prince George’s County. Finally, the PLOT Study will also examine how contextual effects (e.g., neighborhood built environment) impact PT, AT and physical activity.Item Intra-auditory integration between pitch and loudness in humans: Evidence of super-optimal integration at moderate uncertainty in auditory signals(Nature Publishing Group, 2018-09-12) Koh, Kyung; Kwon, Hyun Joon; Kiemel, Tim; Miller, Ross H.; Park, Yang Sun; Kim, Min Joo; Kwon, Young Ha; Kim, Yoon Hyuk; Shim, Jae KunWhen a person plays a musical instrument, sound is produced and the integrated frequency and intensity produced are perceived aurally. The central nervous system (CNS) receives defective afferent signals from auditory systems and delivers imperfect efferent signals to the motor system due to the noise in both systems. However, it is still little known about auditory-motor interactions for successful performance. Here, we investigated auditory-motor interactions as multi-sensory input and multi-motor output system. Subjects performed a constant force production task using four fingers in three different auditory feedback conditions, where either the frequency (F), intensity (I), or both frequency and intensity (FI) of an auditory tone changed with sum of finger forces. Four levels of uncertainty (high, moderate-high, moderate-low, and low) were conditioned by manipulating the feedback gain of the produced force. We observed performance enhancement under the FI condition compared to either F or I alone at moderate-high uncertainty. Interestingly, the performance enhancement was greater than the prediction of the Bayesian model, suggesting super-optimality. We also observed deteriorated synergistic multi-finger interactions as the level of uncertainty increased, suggesting that the CNS responded to increased uncertainty by changing control strategy of multi-finger actions.Item Defects in sarcolemma repair and skeletal muscle function after injury in a mouse model of Niemann-Pick type A/B disease(Springer Nature, 2019-01-05) Michailowsky, V.; Li, H.; Mittra, B.; Iyer, S. R.; Mazála, D. A. G.; Corrotte, M.; Wang, Y.; Chin, E. R.; Lovering, R. M.; Andrews, N. W.Niemann-Pick disease type A (NPDA), a disease caused by mutations in acid sphingomyelinase (ASM), involves severe neurodegeneration and early death. Intracellular lipid accumulation and plasma membrane alterations are implicated in the pathology. ASM is also linked to the mechanism of plasma membrane repair, so we investigated the impact of ASM deficiency in skeletal muscle, a tissue that undergoes frequent cycles of injury and repair in vivo. Utilizing the NPDA/B mouse model ASM−/− and wild type (WT) littermates, we performed excitation-contraction coupling/Ca2+ mobilization and sarcolemma injury/repair assays with isolated flexor digitorum brevis fibers, proteomic analyses with quadriceps femoris, flexor digitorum brevis, and tibialis posterior muscle and in vivo tests of the contractile force (maximal isometric torque) of the quadriceps femoris muscle before and after eccentric contraction-induced muscle injury. ASM−/− flexor digitorum brevis fibers showed impaired excitation-contraction coupling compared to WT, a defect expressed as reduced tetanic [Ca2+]i in response to electrical stimulation and early failure in sustaining [Ca2+]i during repeated tetanic contractions. When injured mechanically by needle passage, ASM−/− flexor digitorum brevis fibers showed susceptibility to injury similar to WT, but a reduced ability to reseal the sarcolemma. Proteomic analyses revealed changes in a small group of skeletal muscle proteins as a consequence of ASM deficiency, with downregulation of calsequestrin occurring in the three different muscles analyzed. In vivo, the loss in maximal isometric torque of WT quadriceps femoris was similar immediately after and 2 min after injury. The loss in ASM−/− mice immediately after injury was similar to WT, but was markedly larger at 2 min after injury. Skeletal muscle fibers from ASM−/− mice have an impairment in intracellular Ca2+ handling that results in reduced Ca2+ mobilization and a more rapid decline in peak Ca2+ transients during repeated contraction-relaxation cycles. Isolated fibers show reduced ability to repair damage to the sarcolemma, and this is associated with an exaggerated deficit in force during recovery from an in vivo eccentric contraction-induced muscle injury. Our findings uncover the possibility that skeletal muscle functional defects may play a role in the pathology of NPDA/B disease.Item Between Privilege and Oppression: An Intersectional Analysis of Active Transportation Experiences Among Washington D.C. Area Youth(MDPI, 2019-04-12) Roberts, Jennifer D.; Mandic, Sandra; Fryer, Craig S.; Brachman, Micah L.; Ray, RashawnThe use of active transportation (AT), such as walking, cycling, or even public transit, as a means of transport offers an opportunity to increase youth physical activity and improve health. Despite the well-known benefits of AT, there are environmental and social variables that converge on the AT experiences of low-income youth and youth of color (YOC) that have yet to be fully uncovered. This study uses an intersectional framework, largely focusing on the race-gender-class trinity, to examine youth AT within a context of transportation inequity. Theoretically guided by the Ecological Model of Active Transportation, focus groups were completed with two groups of girls (15 participants) and two groups of boys (nine participants) ranging between the ages of 12–15 years who lived within the Washington D.C. area. This research found race, gender, and class to be inhibitors of AT for both boys and girls, but with more pronounced negative influences on girls.Item The Color of Health: Residential Segregation, Light Rail Transit Developments, and Gentrification in the United States(MDPI, 2019-09-30) Tehrani, Shadi O.; Wu, Shuling J.; Roberts, Jennifer D.As the modern urban–suburban context becomes increasingly problematic with traffic congestion, air pollution, and increased cost of living, city planners are turning their attention to transit-oriented development as a strategy to promote healthy communities. Transit-oriented developments bring valuable resources and improvements in infrastructure, but they also may be reinforcing decades-old processes of residential segregation, gentrification, and displacement of low-income residents and communities of color. Careful consideration of zoning, neighborhood design, and affordability is vital to mitigating the impacts of transit-induced gentrification, a socioeconomic by-product of transit-oriented development whereby the provision of transit service “upscales” nearby neighborhood(s) and displaces existing community members with more affluent and often White residents. To date, the available research and, thus, overall understanding of transit-induced gentrification and the related social determinants of health are limited and mixed. In this review, an overview of racial residential segregation, light rail transit developments, and gentrification in the United States has been provided. Implications for future transit-oriented developments are also presented along with a discussion of possible solutions.Item Environments, Behaviors, and Inequalities: Reflecting on the Impacts of the Influenza and Coronavirus Pandemics in the United States(MDPI, 2020-06-22) Roberts, Jennifer D.; Tehrani, Shadi O.In the past century, dramatic shifts in demographics, globalization and urbanization have facilitated the rapid spread and transmission of infectious diseases across continents and countries. In a matter of weeks, the 2019 coronavirus pandemic devastated communities worldwide and reinforced the human perception of frailty and mortality. Even though the end of this pandemic story has yet to unfold, there is one parallel that is undeniable when a comparison is drawn between the 2019 coronavirus and the 1918 influenza pandemics. The public health response to disease outbreaks has remained nearly unchanged in the last 101 years. Furthermore, the role of environments and human behaviors on the effect and response to the coronavirus pandemic has brought to light many of the historic and contemporaneous inequalities and injustices that plague the United States. Through a reflection of these pandemic experiences, the American burden of disparity and disproportionality on morbidity, mortality and overall social determinants of health has been examined. Finally, a reimagination of a post-coronavirus existence has also been presented along with a discussion of possible solutions and considerations for moving forward to a new and better normal.Item Sensory-to-Motor Overflow: Cooling Foot Soles Impedes Squat Jump Performance(Frontiers, 2020-10-09) Caminita, Mia; Garcia, Gina L.; Kwon, Hyun Joon; Miller, Ross H.; Shim, Jae KunEvidence from recent studies on animals and humans suggest that neural overflow from the primary sensory cortex (S1) to the primary motor cortex (M1) may play a critical role in motor control. However, it is unclear if whole-body maximal motor tasks are also governed by this mechanism. Maximum vertical squat jumps were performed by 15 young adults before cooling, then immediately following a 15-min cooling period using an ice-water bath for the foot soles, and finally immediately following a 15-min period of natural recovery from cooling. Jump heights were, on average, 3.1 cm lower immediately following cooling compared to before cooling (p = 3.39 × 10−8) and 1.9 cm lower following natural recovery from cooling (p = 0.00124). The average vertical ground reaction force (vGRF) was also lower by 78.2 N in the condition immediately following cooling compared to before cooling (p = 8.1 × 10−5) and 56.7N lower following natural recovery from cooling (p = 0.0043). The current study supports the S1-to-M1 overflow mechanism in a whole-body dynamic jump.Item Unveiling the neuromechanical mechanisms underlying the synergistic interactions in human sensorimotor system(Springer Nature, 2021-01-08) Honarvar, S.; Kim, C.; Diaz-Mercado, Y.; Koh, K.; Kwon, H. J.; Kiemel, T.; Caminita, M.; Hahn, J. O.; Shim, J. K.Motor synergies are neural organizations of a set of redundant motor effectors that interact with one another to compensate for each other’s error and ensure the stabilization of a performance variable. Recent studies have demonstrated that central nervous system synergistically coordinates its numerous motor effectors through Bayesian multi-sensory integration. Deficiency in sensory synergy weakens the synergistic interaction between the motor effectors. Here, we scrutinize the neuromechanical mechanism underlying this phenomenon through spectral analysis and modeling. We validate our model-generated results using experimental data reported in the literature collected from participants performing a finger force production task with and without tactile feedback (manipulated through injection of anesthetic in fingers). Spectral analysis reveals that the error compensation feature of synergies occurs only at low frequencies. Modeling suggests that the neurophysiological structures involving short-latency back-coupling loops similar to the well-known Renshaw cells explain the deterioration of synergy due to sensory deprivation.