Geology Research Works
Permanent URI for this collectionhttp://hdl.handle.net/1903/1594
Browse
3 results
Search Results
Item Satellite Climate Data Records: Development, Applications, and Societal Benefits(MDPI, 2016-04-15) Yang, Wenze; John, Viju O.; Zhao, Xuepeng; Lu, Hui; Knapp, Kenneth R.This review paper discusses how to develop, produce, sustain, and serve satellite climate data records (CDRs) in the context of transitioning research to operation (R2O). Requirements and critical procedures of producing various CDRs, including Fundamental CDRs (FCDRs), Thematic CDRs (TCDRs), Interim CDRs (ICDRs), and climate information records (CIRs) are discussed in detail, including radiance/reflectance and the essential climate variables (ECVs) of land, ocean, and atmosphere. Major international CDR initiatives, programs, and projects are summarized. Societal benefits of CDRs in various user sectors, including Agriculture, Forestry, Fisheries, Energy, Heath, Water, Transportation, and Tourism are also briefly discussed. The challenges and opportunities for CDR development, production and service are also addressed. It is essential to maintain credible CDR products by allowing free access to products and keeping the production process transparent by making source code and documentation available with the dataset.Item NOAA Satellite Soil Moisture Operational Product System (SMOPS) Version 3.0 Generates Higher Accuracy Blended Satellite Soil Moisture(MDPI, 2020-09-03) Yin, Jifu; Zhan, Xiwu; Liu, JichengSoil moisture plays a vital role for the understanding of hydrological, meteorological, and climatological land surface processes. To meet the need of real time global soil moisture datasets, a Soil Moisture Operational Product System (SMOPS) has been developed at National Oceanic and Atmospheric Administration to produce a one-stop shop for soil moisture observations from all available satellite sensors. What makes the SMOPS unique is its near real time global blended soil moisture product. Since the first version SMOPS publicly released in 2010, the SMOPS has been updated twice based on the users’ feedbacks through improving retrieval algorithms and including observations from new satellite sensors. The version 3.0 SMOPS has been operationally released since 2017. Significant differences in climatological averages lead to remarkable distinctions in data quality between the newest and the older versions of SMOPS blended soil moisture products. This study reveals that the SMOPS version 3.0 has overwhelming advantages of reduced data uncertainties and increased correlations with respect to the quality controlled in situ measurements. The new version SMOPS also presents more robust agreements with the European Space Agency’s Climate Change Initiative (ESA_CCI) soil moisture datasets. With the higher accuracy, the blended data product from the new version SMOPS is expected to benefit the hydrological, meteorological, and climatological researches, as well as numerical weather, climate, and water prediction operations.Item Effect of Assimilating SMAP Soil Moisture on CO2 and CH4 Fluxes through Direct Insertion in a Land Surface Model(MDPI, 2022-05-17) Zhang, Zhen; Chatterjee, Abhishek; Ott, Lesley; Reichle, Rolf; Feldman, Andrew F.; Poulter, BenjaminSoil moisture impacts the biosphere–atmosphere exchange of CO2 and CH4 and plays an important role in the terrestrial carbon cycle. A better representation of soil moisture would improve coupled carbon–water dynamics in terrestrial ecosystem models and could potentially improve model estimates of large-scale carbon fluxes and climate feedbacks. Here, we investigate using soil moisture observations from the Soil Moisture Active Passive (SMAP) satellite mission to inform simulated carbon fluxes in the global terrestrial ecosystem model LPJ-wsl. Results suggest that the direct insertion of SMAP reduces the bias in simulated soil moisture at in situ measurement sites by 40%, with a greater improvement at temperate sites. A wavelet analysis between the model and measurements from 26 FLUXNET sites suggests that the assimilated run modestly reduces the bias of simulated carbon fluxes for boreal and subtropical sites at 1–2-month time scales. At regional scales, SMAP soil moisture can improve the estimated responses of CO2 and CH4 fluxes to extreme events such as the 2018 European drought and the 2019 rainfall event in the Sudd (Southern Sudan) wetlands. The simulated improvements to land–surface carbon fluxes using the direct insertion of SMAP are shown across a variety of timescales, which suggests the potential of SMAP soil moisture in improving the model representation of carbon–water coupling.