Geography Research Works
Permanent URI for this collectionhttp://hdl.handle.net/1903/1641
Browse
3 results
Search Results
Item Changing cropland in changing climates: quantifying two decades of global cropland changes(Institute of Physics, 2023-05-12) Kennedy, Jennifer; Hurtt, George C.; Liang, Xin-Zhong; Chini, Louise; Ma, LeiClimate change is impacting global crop productivity, and agricultural land suitability is predicted to significantly shift in the future. Responses to changing conditions and increasing yield variability can range from altered management strategies to outright land use conversions that may have significant environmental and socioeconomic ramifications. However, the extent to which agricultural land use changes in response to variations in climate is unclear at larger scales. Improved understanding of these dynamics is important since land use changes will have consequences not only for food security but also for ecosystem health, biodiversity, carbon storage, and regional and global climate. In this study, we combine land use products derived from the Moderate Resolution Imaging Spectroradiometer with climate reanalysis data from the European Centre for Medium-Range Weather Forecasts Reanalysis v5 to analyze correspondence between changes in cropland and changes in temperature and water availability from 2001 to 2018. While climate trends explained little of the variability in land cover changes, increasing temperature, extreme heat days, potential evaporation, and drought severity were associated with higher levels of cropland loss. These patterns were strongest in regions with more cropland change, and generally reflected underlying climate suitability—they were amplified in hotter and drier regions, and reversed direction in cooler and wetter regions. At national scales, climate response patterns varied significantly, reflecting the importance of socioeconomic, political, and geographic factors, as well as differences in adaptation strategies. This global-scale analysis does not attempt to explain local mechanisms of change but identifies climate-cropland patterns that exist in aggregate and may be hard to perceive at local scales. It is intended to supplement regional studies, providing further context for locally-observed phenomena and highlighting patterns that require further analysis.Item An Evaluation of the Climate Change Preparedness of Terrestrial Protected Areas(2022-05-01) Panday, Frances Marie; Hurrt, George; Lamb, RachelThe rate at which the climate changes and the direction of these shifts is highly variable across the landscape. As proposed by Loarie et al. (2009), the concept of a climate change velocity (CV) adds a spatial component to the rate at which the temperature increases across the landscape. Identifying where regions will experience the most significant changes in climate conditions is highly valuable for the management of areas with high ecological and societal value, such as protected areas (PAs). To examine the relationship between climate velocity and protected areas, Loarie et al. (2009) proposes the concept of a climate residence time (CRT), which estimates the length of time current climate conditions will remain in a given spatial location before shifting. Current infrastructure design managing protected areas is outdated and may be ill-equipped to handle future changes in climate. Current work examining the relationship between protected area and the CV is relatively new, but results are promising. Here, we evaluate the climate-change preparedness of terrestrial protected areas in MD by first, quantifying the magnitude of future changes using the climate residence time, and second, evaluating their capacity to manage changes by qualitatively scoring their associated management plans for climate adaptation and/or mitigation language. This two-fold approach showed that most PAs have climate residence times less than or equal to 1.5 years and had plans with little to no language addressing climate change and its associated impacts. This suggests that PAs in MD are poorly prepared for future changes in climate. Given these results, including CVs and CRTs within PA management plans would improve a park’s adaptive capacity but also signal the need for a cross-coordinated management effort that transcends different management and governance scales.Item Campus Forest Carbon Project Technical Guidance Document(2022-08-11) Panday, Frances Marie; Howerton, Michael; Kopp, Katelyn; Hurtt, George; Lamb, RachelThe technical guidance document was created for the Office of Sustainability to support the inclusion of forest carbon into UMD's Greenhouse Gas Inventory. This document outlines the Campus Forest Carbon's project role within UMD's climate action plan and the approach to calculating forest carbon dynamics on UMD managed and owned properties.